Phage-based biosensors have shown significant promise in meeting the present needs of the food and agricultural industries due to a combination of sufficient portability, speed, ease of use, sensitivity, and low production cost. Although current phage-based methods do not meet the bacteria detection limit imposed by the EPA, FDA, and USDA, a better understanding of phage genetics can significantly increase their sensitivity as biosensors. In the current study, the signal sensitivity of a T4 phage-based detection system was improved via transcriptional upregulation of the reporter enzyme Nanoluc luciferase (Nluc). An efficient platform to evaluate the promoter activity of reporter T4 phages was developed. The ability to upregulate Nluc within T4 phages was evaluated using 15 native T4 promoters. Data indicates a six-fold increase in reporter enzyme signal from integration of the selected promoters. Collectively, this work demonstrates that fine tuning the expression of reporter enzymes such as Nluc through optimization of transcription can significantly reduce the limits of detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0an01413c | DOI Listing |
J Biomed Sci
January 2025
Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
Background: Recent studies indicate that N6-methyladenosine (mA) RNA modification may regulate ferroptosis in cancer cells, while its molecular mechanisms require further investigation.
Methods: Liquid Chromatography-Tandem Mass Spectrometry (HPLC/MS/MS) was used to detect changes in mA levels in cells. Transmission electron microscopy and flow cytometry were used to detect mitochondrial reactive oxygen species (ROS).
Nucleic Acids Res
January 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China.
Inducible systems are crucial to metabolic engineering and synthetic biology, enabling organisms that function as biosensors and produce valuable compounds. However, almost all inducible systems are strain-specific, limiting comparative analyses and applications across strains rapidly. This study designed and presented a robust workflow for developing the cross-species inducible system.
View Article and Find Full Text PDFCancer Biol Ther
December 2025
State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Military Medical University, Xi'an, China.
Ribosomal S6 protein kinase 4 (RSK4), a member of the serine‒threonine kinase family, plays a vital role in the Ras‒MAPK pathway. This kinase is responsible for managing several cellular activities, including cell growth, proliferation, survival, and mobility. In this study, we observed higher RSK4 protein expression in clear cell renal cell carcinoma (ccRCC) than in normal kidney tissue, and the overexpression of RSK4 might predict poor outcomes for ccRCC patients.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Osaka 920-1192, Japan.
G protein-coupled receptors (GPCRs) are essential cell surface proteins involved in transducing extracellular signals into intracellular responses, regulating various physiological processes. This study validated the use of the Tango assay, a sensitive method for detecting GPCR activation, in Schneider 2 (S2) cells, focusing on the human Dopamine Receptor D4 (DRD4). Plasmids encoding the LexA-tagged human DRD4 receptor and a luciferase reporter were co-transfected into S2 cells and stimulated with dopamine.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, Guangdong, China.
Objective: Osteoporosis increases the risk of fragility fractures, impacting patients' lives. This study aimed to investigate whether LINC01271 was involved in the process of fragility fractures and healing, providing a new perspective for its diagnosis and treatment.
Methods: This study included 94 healthy individuals, 82 patients with osteoporosis, and 85 patients with fragility fractures as subjects.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!