Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: As a step towards the development of an audiological diagnostic supporting tool employing machine learning methods, this article aims at evaluating the classification performance of different audiological measures as well as Common Audiological Functional Parameters (CAFPAs). CAFPAs are designed to integrate different clinical databases and provide abstract representations of measures.
Design: Classification and evaluation of classification performance in terms of sensitivity and specificity are performed on a data set from a previous study, where statistical models of diagnostic cases were estimated from expert-labelled data.
Study Sample: The data set contains 287 cases.
Results: The classification performance in clinically relevant comparison sets of two competing categories was analysed for audiological measures and CAFPAs. It was found that for different audiological diagnostic questions a combination of measures using different weights of the parameters is useful. A set of four to six measures was already sufficient to achieve maximum classification performance which indicates that the measures contain redundant information.
Conclusions: The current set of CAFPAs was confirmed to yield in most cases approximately the same classification performance as the respective optimum set of audiological measures. Overall, the concept of CAFPAs as compact, abstract representation of auditory deficiencies is confirmed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14992027.2020.1817581 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!