Partitioning of bioactive molecules, including drugs, into cell membranes may produce indiscriminate changes in membrane protein function. As a guide to safe drug development, it therefore becomes important to be able to predict the bilayer-perturbing potency of hydrophobic/amphiphilic drugs candidates. Toward this end, we exploited gramicidin channels as molecular force probes and developed and assays to measure drugs' bilayer-modifying potency. We examined eight drug-like molecules that were found to enhance or suppress gramicidin channel function in a thick 1,2-dierucoyl--glycero-3-phosphocholine (DCPC) but not in thin 1,2-dioleoyl--glycero-3-phosphocholine (DCPC) lipid bilayer. The mechanism underlying this difference was attributable to the changes in gramicidin dimerization free energy by drug-induced perturbations of lipid bilayer physical properties and bilayer-gramicidin interactions. The combined and approaches, which allow for predicting the perturbing effects of drug candidates on membrane protein function, have implications for preclinical drug safety assessment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7586341 | PMC |
http://dx.doi.org/10.1021/acs.jmedchem.0c00958 | DOI Listing |
PNAS Nexus
January 2025
Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01002, USA.
Every protein progresses through a natural lifecycle from birth to maturation to death; this process is coordinated by the protein homeostasis system. Environmental or physiological conditions trigger pathways that maintain the homeostasis of the proteome. An open question is how these pathways are modulated to respond to the many stresses that an organism encounters during its lifetime.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
Macrophage-mediated inflammation plays a pivotal role in cardiovascular disease pathogenesis. However, current cell-based models lack a comprehensive understanding of crosstalk between macrophages and cardiomyocytes, hindering the discovery of effective therapeutic interventions. Here, a microfluidic model has been developed to facilitate the coculture of macrophages and cardiomyocytes, allowing for mapping key signaling pathways and screening potential therapeutic agents against inflammation-induced dynamic myocardial injury.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
Accurate receptor/ligand binding free energy calculations can greatly accelerate drug discovery by identifying highly potent ligands. By simulating the change from one compound structure to another, the relative binding free energy (RBFE) change can be calculated based on the theoretically rigorous free energy perturbation (FEP) method. However, existing FEP-RBFE approaches may face convergence challenges due to difficulties in simulating non-physical intermediate states, which can lead to increased computational costs to obtain the converged results.
View Article and Find Full Text PDFReprod Sci
January 2025
Department of Zoology, Faculty of Science, University of Allahabad, Prayagraj, 211002, UP, India.
As global change threatens avian biodiversity, understanding species responses to environmental perturbations due to radiation emitted by enormous increase in the application of wireless communication is very urgent. The study investigates the effect of MW radiation on redox balance, stress level, male fertility and the efficacy of Withania somnifera (WS) root extract (100 mg/kg body weight) orally administered in 8 weeks old mature male Japanese quail exposed to 2.4 GHz MW radiation for 2 h/day for 30 days with power density = 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea.
Advances in the semiconductor industry have been limited owing to the constraints imposed by silicon-based CMOS technology; hence, innovative device design approaches are necessary. This study focuses on "more than Moore" approaches, specifically in neuromorphic computing. Although MoS devices have attracted attention as neuromorphic computing candidates, their performances have been limited due to environment-induced perturbations to carrier dynamics and the formation of defect states.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!