Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a powerful label-free technique for mapping the spatial distribution of biomolecules directly from tissue. However, like most other MSI techniques, it suffers from low ionization yields and ion suppression effects for biomolecules that might be of interest for a specific application at hand. Recently, a form of laser postionization was introduced (coined MALDI-2) that critically boosts the ion yield for many glyco- and phospholipids by several orders of magnitude and makes the detection of further biomolecular species possible. While the MALDI-2 technique is being increasingly applied by the MSI community, it is still only implemented in fine vacuum ion sources in a pressure range of about 1-10 mbar. Here, we show the first implementation of the technique to a custom-built atmospheric pressure ion source coupled to an Orbitrap Elite system. We present results from parameter optimization of MALDI-2 at atmospheric pressure, compare our findings to previously published fine vacuum data, and show first imaging results from mouse cerebellum with a 20 μm pixel size. Our findings broaden the feasibility of the technique to overall more flexible atmospheric pressure ion sources.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jasms.0c00237DOI Listing

Publication Analysis

Top Keywords

atmospheric pressure
12
maldi-2 atmospheric
8
fine vacuum
8
ion sources
8
pressure ion
8
ion
5
maldi-2
4
atmospheric pressure-parameter
4
pressure-parameter optimization
4
optimization imaging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!