Interstrand cross-links (ICLs) are adducts of covalently linked nucleotides in opposing DNA strands that obstruct replication and prime cells for malignant transformation or premature cell death. ICLs may be caused by alkylating agents or ultraviolet (UV) irradiation. These toxic lesions are removed by diverse repair mechanisms such as the Fanconi anemia (FA) pathway, nucleotide excision repair (NER), translesion synthesis (TLS), and homologous recombination (HR). In mammals, the xeroderma pigmentosum group F (XP-F) protein participates in both the FA pathway and NER, while DNA polymerase ζ (POLZ-1) and REV-1 mediate TLS. Nevertheless, little is known regarding the genetic determinants of these pathways in ICL repair and damage tolerance in germ cells. In this study, we examined the sensitivity of germ cells to ICLs generated by trimethylpsoralen/ultraviolet A (TMP/UV-A) combination, and embryonic mortality was employed as a surrogate for DNA damage in germ cells. Our results show that XPA-1, POLZ-1, and REV-1 were more critical than FA pathway mediators in preserving genomic stability in germ cells. Notably, mutant worms lacking both XPA-1 and POLZ-1 (or REV-1) were more sensitive to ICLs compared to either single mutant alone. Moreover, knockdown of XPA-1 and REV-1 leads to the retarded disappearance of RPA-1 and RAD-51 foci upon ICL damage. Since DNA repair mechanisms are broadly conserved, our findings may have ramifications for prospective therapeutic interventions in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7590238 | PMC |
http://dx.doi.org/10.1021/acs.biochem.0c00719 | DOI Listing |
Tissue Eng Part C Methods
January 2025
CiRA Foundation, Research and Development Center, Osaka, Japan.
Mouse embryonic fibroblasts (MEFs) have been widely used as feeder cells in embryonic stem cell cultures because they can mimic the embryonic microenvironment. Milk fat globule-epidermal growth factor 8 (MFGE8) is expressed during mouse gonadal development, 10.5-13.
View Article and Find Full Text PDFNeuro Oncol
January 2025
Department of Neurology, Division of Infectious Diseases, Washington University School of Medicine, St. Louis MO 63110 USA.
Background: The intestinal microbiota regulates normal brain physiology and the pathogenesis of several neurological disorders. While prior studies suggested that this regulation operates through immune cells, the underlying mechanisms remain unclear. Leveraging two well characterized murine models of low-grade glioma (LGG) occurring in the setting of the neurofibromatosis type 1 (NF1) cancer predisposition syndrome, we sought to determine the impact of the gut microbiome on optic glioma progression.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
Chromatin remodeling, which involves the histone-to-protamine exchange process during spermiogenesis, is crucial for sperm nuclear condensation and male fertility. However, the key regulators and underlying molecular mechanisms involved in this process remain largely unexplored. In this study, we discovered that deficiency in the family with sequence similarity 170 member A (Fam170a) led to abnormal sperm nuclear morphology and male infertility in mice, mirroring the observation of very low Fam170a transcription levels in sperm of infertile men with teratozoospermia.
View Article and Find Full Text PDFEpigenetics
December 2025
Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA.
The effects of chronically stressing male mice can be transmitted across generations by stress-specific changes in their sperm miRNA content, which induce stress-specific phenotypes in their offspring. However, how each stress paradigm alters the levels of distinct sets of sperm miRNAs is not known. We showed previously that exposure of male mice to chronic social instability (CSI) stress results in elevated anxiety and reduced sociability specifically in their female offspring across multiple generations because it reduces miR-34c levels in sperm of stressed males and their unstressed male offspring.
View Article and Find Full Text PDFThe evolutionary transition from simple chordate body plans to complex vertebrate body plans was driven by the acquisition of the neural crest, a stem cell population that retains broad, multi-germ layer developmental potential long after most embryonic cells have become lineage restricted. We have previously shown that neural crest cells share significant gene regulatory architecture with pluripotent blastula stem cells. Here we examine the roles that Krüppel-like Family (Klf) transcription factors play in these stem cell populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!