The fragile X mental retardation protein (FMRP) is an RNA-binding protein that regulates the translation of numerous mRNAs in neurons. The precise mechanism of translational regulation by FMRP is unknown. Some studies have indicated that FMRP inhibits the initiation step of translation, whereas other studies have indicated that the elongation step of translation is inhibited by FMRP. To determine whether FMRP inhibits the initiation or the elongation step of protein synthesis, we investigated mG-cap-dependent and IRES-driven, cap-independent translation of several reporter mRNAs . Our results show that FMRP inhibits both mG-cap-dependent and cap-independent translation to similar degrees, indicating that the elongation step of translation is inhibited by FMRP. Additionally, we dissected the RNA-binding domains of hFMRP to determine the essential domains for inhibiting translation. We show that the RGG domain, together with the C-terminal domain (CTD), is sufficient to inhibit translation, while the KH domains do not inhibit mRNA translation. However, the region between the RGG domain and the KH2 domain may contribute as NT-hFMRP shows more potent inhibition than the RGG-CTD tail alone. Interestingly, we see a correlation between ribosome binding and translation inhibition, suggesting the RGG-CTD tail of hFMRP may anchor FMRP to the ribosome during translation inhibition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8034582 | PMC |
http://dx.doi.org/10.1021/acs.biochem.0c00534 | DOI Listing |
J Anat
December 2024
Department of Cellular Biology, The University of Georgia, Athens, Georgia, USA.
The fovea, a pit in the retina, is crucial for high-acuity vision in humans and is found in the eyes of other vertebrates, including certain primates, birds, lizards, and fish. Despite its importance for vision, our understanding of the mechanisms involved in fovea development remains limited. Widely used ocular research models lack a foveated retina, and studies on fovea development are mostly limited to histological and molecular studies in primates.
View Article and Find Full Text PDFNanomicro Lett
December 2024
School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
As modern communication and detection technologies advance at a swift pace, multifunctional electromagnetic interference (EMI) shielding materials with active/positive infrared stealth, hydrophobicity, and electric-thermal conversion ability have received extensive attention. Meeting the aforesaid requirements simultaneously remains a huge challenge. In this research, the melamine foam (MF)/polypyrrole (PPy) nanowire arrays (MF@PPy) were fabricated via one-step electrochemical polymerization.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Waihuan Xi Road 100, Guangzhou, Guangdong 510006, PR China.
Lignin, a renewable and biodegradable polymer, offers a promising alternative to petroleum-based polyols for polyurethane elastomer synthesis. However, its complex structure poses challenges, such as poor dispersibility and reactivity. This study introduces a novel one-step and solvent-free method for synthesizing lignin-containing polyurethane elastomers (SF-LPUes-ONE) with a high lignin substitution rate of at least 30 wt%.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
Puromycin (Puro) is a natural aminonucleoside antibiotic that inhibits protein synthesis by its incorporation into elongating peptide chains. The unique mechanism of Puro finds diverse applications in molecular biology, including the selection of genetically engineered cell lines, in situ protein synthesis monitoring, and studying ribosome functions. However, the key step of Puro biosynthesis remains enigmatic.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
In this study, we investigated the behaviors of epoxy composites reinforced with bamboo (BF) and hemp (HF) fibers. Both fibers were treated using dielectric barrier discharge (DBD) plasma for various durations (2.5 to 20 min).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!