Cardiac dysfunction is a significant manifestation of sepsis and it is associated with the prognosis of the disease. Astaxanthin (ATX) has been discovered to serve a variety of pharmacological effects, including anti‑inflammatory, antioxidant and antiapoptotic properties. The present study aimed to investigate the role and mechanisms of ATX in sepsis‑induced myocardial injury. Male C57BL/6 mice were divided into three groups (15 mice per group): Control group, lipopolysaccharide (LPS) group and LPS + ATX group. The cardiac dysfunction model was induced through an intraperitoneal injection of LPS (10 mg/kg) and ATX (40 mg/kg) was administered to the LPS + ATX group by intraperitoneal injection 30 min following the administration of LPS. All animals were sacrificed after 24 h. Inflammatory cytokine levels in the serum were detected using ELISAs, and cardiac B‑type natriuretic peptide (BNP) levels were analyzed using western blot analysis and reverse transcription‑quantitative PCR. Furthermore, the extent of myocardial injury was evaluated using pathological analysis, and cardiomyocyte apoptosis was analyzed using a TUNEL assay, in addition to determining the expression levels of Bcl‑2 and Bax. The expression levels of proteins involved in the mitogen activated protein kinase (MAPK) and PI3K/AKT signaling pathways were also analyzed using western blot analysis. ATX significantly suppressed the LPS‑induced increased production of TNF‑α and IL‑6 and suppressed the protein expression levels of BNP, Bax and Bcl‑2 to normal levels. ATX also prevented the histopathological changes to the myocardial tissue and reduced the extent of necrosis. Furthermore, the treatment with ATX suppressed the LPS‑activated MAPK and PI3K/AKT signaling. ATX additionally exerted a protective effect on cardiac dysfunction caused by sepsis by inhibiting MAPK and PI3K/AKT signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7453592PMC
http://dx.doi.org/10.3892/mmr.2020.11443DOI Listing

Publication Analysis

Top Keywords

myocardial injury
12
cardiac dysfunction
12
expression levels
12
mapk pi3k/akt
12
pi3k/akt signaling
12
lps + atx group
8
intraperitoneal injection
8
analyzed western
8
western blot
8
blot analysis
8

Similar Publications

Purpose: This study aims to investigate whether zinc ion (Zn) alleviates myocardial ischemia-reperfusion injury (MIRI) through the MAM-associated signaling pathway and to explore its impact on ERS and calcium overload.

Methods: H9C2 cells were cultured in a DMEM supplemented with 10 % fetal bovine serum and 1 % antibiotic solution. A MIRI model was established through simulated ischemia and reoxygenation with Zn treatment in a complete medium.

View Article and Find Full Text PDF

Background: The hypobaric hypoxic atmosphere can cause adverse reactions or sickness. The purpose of this study was to explore the preventive effect and mechanism of human umbilical cord mesenchymal stem cells (hUC-MSCs) on acute pathological injury in mice exposed to high-altitude.

Methods: We pretreated C57BL/6 mice with hUC-MSCs via the tail vein injection, and then the mice were subjected to hypobaric hypoxic conditions for five days.

View Article and Find Full Text PDF

Effect of estrogen on myocardial ischemia-reperfusion injury in male and female rats and related mechanism.

Steroids

January 2025

Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China. Electronic address:

Due to the difference of estrogen levels in different phases of estrous cycle, it is necessary to exclude the influence of endogenous estrogen when studying the cardiovascular effects of estrogen and its analogues. In this study, the ischemia/reperfusion (I/R) injury of isolated heart were investigated in female rats during different phases of estrous cycle with male rats as comparison. The results indicated that the estrogen content in blood of rats during metestrus and diestrus (MD) was lower than those during proestrus and estrous (PE).

View Article and Find Full Text PDF

Objective: Myocardial ischemia-reperfusion injury (MIRI) is a highly complex disease with high morbidity and mortality. Studying the molecular mechanism of MIRI and discovering new targets are crucial for the future treatment of MIRI.

Methods: We constructed the MIRI rat model and hypoxia/reoxygenation (H/R) injury cardiomyocytes model.

View Article and Find Full Text PDF

Background: Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have shown benefits in improving cardiovascular (CV) outcomes in patients with heart failure (HF) and may mitigate symptom progression in myocardial infarction (MI). However, their effectiveness in patients with type 2 diabetes and MI undergoing percutaneous coronary intervention (PCI) is unclear.

Methods: To identify eligible studies, a comprehensive search of electronic databases, PubMed, Cochrane Library, Scopus and Embase, was conducted from inception until May 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!