Synthetic access to a phosphorescent non-palindromic pincer complex of palladium by a double oxidative addition - comproportionation sequence.

Chem Commun (Camb)

Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Division Molecular Chemistry, Engesserstr. 15, 76131 Karlsruhe, Germany.

Published: October 2020

A highly luminescent non-palindromic [(C^C^N)Pd] pincer complex forms upon reacting pyridine-substituted 2,2'-diiodo-biphenyl with [Pd(PPh3)4]. This case study establishes for the first time that the title compound is formed via a double oxidative addition - comproportionation sequence. DFT and TDDFT calculations complement mechanistic and photophysical characterizations.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cc04065gDOI Listing

Publication Analysis

Top Keywords

pincer complex
8
double oxidative
8
oxidative addition
8
addition comproportionation
8
comproportionation sequence
8
synthetic access
4
access phosphorescent
4
phosphorescent non-palindromic
4
non-palindromic pincer
4
complex palladium
4

Similar Publications

We present the synthesis, characterization, and photophysical properties of two pyrene-modified () pincer bismuth complexes, where the pyrenyl residues are either part of the cyclometalating pincer ligand (1) or bound as monodentate ligands to the Bi ion (2). Both complexes are dually emissive at 77 K. For complex 2, pyrenyl phosphorescence persists at r.

View Article and Find Full Text PDF

Using a direct knitting strategy, we successfully prepared a novel heterogeneous catalyst consisting of pyridine-bridged bis(imidazolium-2-ylidene) palladium complexes (CNC-Pd) embedded in a knitted network polymer. The resulting catalysts (HCP-CNC-Pd-d) exhibited high specific surface areas of 982 m2 g-1 with microporous and mesoporous structures. The large surface area enhances contact between the substrate and the catalytic center, while the strong chelation between CNC and the metal ion ensures the catalyst's durability.

View Article and Find Full Text PDF

Functional pincer ligands that engage in metal-ligand cooperativity and/or are capable of redox non-innocence have found a great deal of success in catalysis. These two properties may be found in metal complexes of the 2,6-bis(pyrazol-3-yl)pyridine (bpp) ligands. With this goal in mind, we have attempted the coordination of 2,6-bis(5-trifluoromethylpyrazol-3-yl)pyridine (LCF3) and its Bu analogue 2,6-bis(5--butylpyrazol-3-yl)pyridine (LtBu) to Mo(0) by reactions with mixed phosphine/carbonyl complexes [Mo(CO)(MeCN)(PMePh)] 1-3 (1 ≤ ≤ 3).

View Article and Find Full Text PDF

Catalysis activity and chemoselectivity control with the ligand in Ru-H pincer complexes.

Dalton Trans

January 2025

Division of Chemical and Biological Sciences, Ames National Laboratory, Ames, IA 50011, USA.

(PhPNP)Ru(H)(Cl)(CO) serves as a precatalyst to a variety of important catalytic transformations but most improvements have been restricted to the replacement of the CO ligand to the hydride or changing the Ph groups of the pincer for other aryl or alkyl groups. The ligand to the hydride is often another hydride and studies that utilize other ligands in catalysis are limited. In this work, we synthesized a series of [(PhPNP)Ru(H)(CO)(L)][BPh] complexes bearing isonitrile, PMe, or a N-heterocyclic ligand to the Ru-H.

View Article and Find Full Text PDF

Compounds featuring bonds between mercury and transition metals are of interest for their intriguing/ambiguous bonding and scarcely explored reactivities. We report herein the synthesis and reactivities of the new compound [(POCOP)Ni]2Hg, [Ni2Hg], featuring a trinuclear Ni-Hg-Ni core (POCOP = κP,κC,κP´-2,6-(i-Pr2PO)2C6H3). [Ni2Hg] reacts with CO2 to give the carbonate-bridged complex [Ni2CO3].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!