A Low-Temperature Solution-Processed CuSCN/Polymer Hole Transporting Layer Enables High Efficiency for Organic Solar Cells.

ACS Appl Mater Interfaces

Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.

Published: October 2020

The hole transporting layers (HTLs) between the electrode and light absorber play a vital role in charge extraction and transport processes in organic solar cells (OSCs). Herein, a bilayer structure HTL of CuSCN/TFB is formed by soluble copper(I) thiocyanate (CuSCN) and poly[(9,9-dioctylfluorenyl-2,7-diyl)--(4,4'-(-(4-butylphenyl)))] (TFB). The excellent charge extraction capability is proved in nonfullerene PM6:Y6 and fullerene PTB7-Th:PCBM blend system-based cells. The introduction of TFB tunes the work function and polishes the interfacial contact between the HTL and light absorber, which favors the hole extraction process in cells. Meanwhile, lower recombination loss, higher exciton dissociation probability, and larger domain size are observed in CuSCN/TFB HTL-based cells compared to those of the reference cell with the pristine CuSCN HTL, which significantly improve the photovoltaic performance. As a result, a champion efficiency of 15.10% is obtained, which is >14% higher than the efficiency of 13.15% obtained in the reference cell. This study suggests that CuSCN/TFB is a promising HTL to achieve high efficiency for OSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c12845DOI Listing

Publication Analysis

Top Keywords

hole transporting
8
high efficiency
8
organic solar
8
solar cells
8
light absorber
8
charge extraction
8
reference cell
8
cells
5
low-temperature solution-processed
4
solution-processed cuscn/polymer
4

Similar Publications

Poly[(9,9-dioctylfluorenyl-2,7-diyl)--(4,4'-(-(4-butylphenyl)))] (TFB) is a widely used hole transport material (HTM) in quantum dot light-emitting diodes (QLEDs). However, TFB-based solution-processed QLEDs face several challenges, including interlayer erosion, low hole mobility, shallow energy level of the highest occupied molecular orbital, and current leakage, which compromise the device efficiency and stability. To overcome these challenges, bromine and azide-based photothermally cross-linkable TFB derivatives, i.

View Article and Find Full Text PDF

Modification at ITO/NiO Interface with MoS Enables Hole Transport for Efficient and Stable Inverted Perovskite Solar Cells.

ChemSusChem

January 2025

Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China.

Inverted perovskite solar cells (IPSCs) utilizing nickel oxide (NiO) as hole transport material have made great progress, driven by improvements in materials and interface engineering. However, challenges remain due to the low intrinsic conductivity of NiO and inefficient hole transport. In this study, we introduced MoS nanoparticles at the indium tin oxide (ITO) /NiO interface to enhance the ITO surface and optimize the deposition of NiO, resulting in increased conductivity linked to a ratio of Ni:Ni.

View Article and Find Full Text PDF

Oriented Molecular Dipole-Enabled Modulation of NiO/Perovskite Interface for Pb-Sn Mixed Inorganic Perovskite Solar Cells.

Adv Mater

January 2025

Department of Materials Science and Engineering, Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China.

Nickel oxide (NiO) is considered as a potential hole transport material in the fabrication of lead-tin (Pb-Sn) perovskite solar cells (PSCs) for tandem applications. However, the energy level mismatch and unfavorable redox reactions between Ni species and Sn at the NiO/perovskite interface pose challenges. Herein, high-performance Pb-Sn-based inorganic PSCs are demonstrated by modulating the NiO/perovskite interface with a multifunctional 4-aminobenzenesulfonic acid (4-ABSA) interlayer.

View Article and Find Full Text PDF

High-Efficiency (21.4%) Carbon Perovskite Solar Cells via Cathode Interface Engineering by using CuPc Hole-Transporting Layers.

Angew Chem Int Ed Engl

January 2025

EPFL: Ecole Polytechnique Federale de Lausanne, Department of Chemistry, Rue de Industries 17, 1050, Sion, SWITZERLAND.

Carbon perovskite solar cells (C-PSCs) represent a promising photovoltaic technology that addresses the long-term operating stability needed to compete with commercial Si solar cells. However, the poor interface contacts between the carbon electrode and the perovskite result in a gap between C-PSC's performances and state-of-the-art PSCs based on metallic back electrodes. In this work, Cu (II) phthalocyanine (CuPc) was rediscovered as an effective hole-transporting material (HTM) to be coupled with carbon electrodes.

View Article and Find Full Text PDF

The deep oceans are environments of complex carbon dynamics that have the potential to significantly impact the global carbon cycle. However, the role of hadal zones, particularly hadal trenches (water depth > 6 km), in the oceanic dissolved organic carbon (DOC) cycle is not thoroughly investigated. Here we report distinct DOC signatures in the Japan Trench bottom water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!