Background: Mesial temporal lobe epilepsy (TLE) is one of the most widespread neurological network disorders. Computational anatomy MRI studies demonstrate a robust pattern of cortical volume loss. Most statistical analyses provide information about localization of significant focal differences in a segregationist way. Multivariate Bayesian modeling provides a framework allowing inferences about inter-regional dependencies. We adopt this approach to answer following questions: Which structures within a pattern of dynamic epilepsy-associated brain anatomy reorganization best predict TLE pathology. Do these structures differ between TLE subtypes?

Methods: We acquire clinical and MRI data from TLE patients with and without hippocampus sclerosis (n = 128) additional to healthy volunteers (n = 120). MRI data were analyzed in the computational anatomy framework of SPM12 using classical mass-univariate analysis followed by multivariate Bayesian modeling.

Results: After obtaining TLE-associated brain anatomy pattern, we estimate predictive power for disease and TLE subtypes using Bayesian model selection and comparison. We show that ipsilateral para-/hippocampal regions contribute most to disease-related differences between TLE and healthy controls independent of TLE laterality and subtype. Prefrontal cortical changes are more discriminative for left-sided TLE, whereas thalamus and temporal pole for right-sided TLE. The presence of hippocampus sclerosis was linked to stronger involvement of thalamus and temporal lobe regions; frontoparietal involvement was predominant in absence of sclerosis.

Conclusions: Our topology inferences on brain anatomy demonstrate a differential contribution of structures within limbic and extralimbic circuits linked to main effects of TLE and hippocampal sclerosis. We interpret our results as evidence for TLE-related spatial modulation of anatomical networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7667340PMC
http://dx.doi.org/10.1002/brb3.1825DOI Listing

Publication Analysis

Top Keywords

temporal lobe
12
brain anatomy
12
tle
10
lobe epilepsy
8
computational anatomy
8
multivariate bayesian
8
mri data
8
hippocampus sclerosis
8
thalamus temporal
8
anatomy
5

Similar Publications

Lack of context modulation in human single neuron responses in the medial temporal lobe.

Cell Rep

January 2025

Centre for Systems Neuroscience, University of Leicester, Leicester, UK; Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain; Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:

In subjects implanted with intracranial electrodes, we use two different stories involving the same person (or place) to evaluate whether and to what extent context modulates human single-neuron responses. Nearly all neurons (97% during encoding and 100% during recall) initially responding to a person/place do not modulate their response with context. Likewise, nearly none (<1%) of the initially non-responsive neurons show conjunctive coding, responding to particular persons/places in a particular context during the tasks.

View Article and Find Full Text PDF

Introduction: Extraneural metastases (ENM) from glioblastoma (GBM) remain extremely rare with only a scarce number of cases described in the literature. The lack of cases leads to no consensus on the optimal treatment and follow-up of these patients.

Research Question: Do patient or tumor characteristics describe risk factors for ENM in GBM patients, and is it possible to identify mechanisms of action?

Material And Methods: This study presents a 55-year-old man with diagnosed GBM who was referred to a CT due to reduced general condition and mild back pain which revealed extensive systemic metastases.

View Article and Find Full Text PDF

Neural deterioration and compensation in visual short-term memory among individuals with amnestic mild cognitive impairment.

Alzheimers Dement

January 2025

Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Well-Being, Department of Psychology, Sun Yat-sen University, Guangzhou, China.

Introduction: Visual short-term memory (VSTM) is a critical indicator of Alzheimer's disease (AD), but whether its neural substrates could adapt to early disease progression and contribute to cognitive resilience in amnestic mild cognitive impairment (aMCI) has been unclear.

Methods: Fifty-five aMCI patients and 68 normal controls (NC) performed a change-detection task and underwent multimodal neuroimaging scanning.

Results: Among the atrophic brain regions in aMCI, VSTM performance correlated with the volume of the right prefrontal cortex (PFC) but not the medial temporal lobe (MTL), and this correlation was mainly present in patients with greater MTL atrophy.

View Article and Find Full Text PDF

Oxytocin, a neuropeptide pivotal in social and reproductive behaviors, has recently gained attention for its potential impact on cognitive processes relevant to creativity. Yet, the direct intricate interplay between oxytocin and creativity, particularly in the context of individual differences in motivational orientations, remains poorly understood. Here, we investigated the effects of intranasal oxytocin on creative thinking in individuals characterized by varying levels of approach and avoidance motivations.

View Article and Find Full Text PDF

Understanding the neural mechanisms underlying emotional processing is critical for advancing neuroscience and mental health interventions. This study examined these mechanisms by analyzing EEG connectivity patterns across different brain regions while participants evoked various emotions. After applying independent component analysis (ICA) to eliminate non-cortical activity, we assessed frequency-specific connectivity patterns using coherence, Granger causality, and graph theoretical measures to evaluate both functional and effective connectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!