Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Astaxanthin (Ast) is an effective neuroprotective and antioxidant compound used to treat Alzheimer's disease (AD); however, the underlying in vivo molecular mechanisms remain unknown. In this study, we report that Ast can activate the mammalian target of rapamycin (mTOR) pathway in the 8-month-old APP/PS1 transgenic mouse model of AD. Our results suggest that Ast could ameliorate the cognitive defects in APP/PS1 mice by activating the mTOR pathway. Moreover, mTOR activation perturbed the mitochondrial dynamics, increased the synaptic plasticity after 21 days of treatment with Ast (10 mg/kg/day), and increased the expression of Aβ-degrading enzymes, mitochondrial fusion, and synapse-associated proteins and decreased the expression of mitochondrial fission proteins. Intraperitoneal injection of the mTOR inhibitor, rapamycin, abolished the effects of Ast. In conclusion, Ast activates the mTOR pathway, which is necessary for mitochondrial dynamics and synaptic plasticity, leading to improved learning and memory. Our results support the use of Ast for the treatment of cognitive deficits. Graphical abstract In summary, Ast ameliorates cognitive deficits via facilitating the mTOR-dependent mitochondrial dynamics and synaptic damage, and reducing Aβ accumulation. This model supports the use of Ast for the treatment of cognitive deficits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11481-020-09953-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!