The experience of pain involves the activation of multiple brain areas. Pain-specific activity patterns within and between these local networks remain, however, largely unknown. We measured neuronal network oscillations in different relevant regions of the mouse brain during acute pain, induced by subcutaneous injection of capsaicin into the left hind paw. Field potentials were recorded from primary somatosensory cortex, anterior cingulate cortex (ACC), posterior insula, ventral posterolateral thalamic nucleus, parietal cortex, central nucleus of the amygdala and olfactory bulb. Analysis included power spectra of local signals as well as interregional coherences and cross-frequency coupling (CFC). Capsaicin injection caused hypersensitivity to mechanical stimuli for at least one hour. At the same time, CFC between low (1-12 Hz) and fast frequencies (80-120 Hz) was increased in the ACC, as well as interregional coherence of low frequency oscillations (< 30 Hz) between several networks. However, these changes were not significant anymore after multiple comparison corrections. Using a variable selection method (elastic net) and a logistic regression classifier, however, the pain state was reliably predicted by combining parameters of power and coherence from various regions. Distinction between capsaicin and saline injection was also possible when data were restricted to frequencies <30 Hz, as used in clinical electroencephalography (EEG). Our findings indicate that changes of distributed brain oscillations may provide a functional signature of acute pain or pain-related alterations in activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7481812PMC
http://dx.doi.org/10.1016/j.ibror.2020.08.001DOI Listing

Publication Analysis

Top Keywords

neuronal network
8
network oscillations
8
acute pain
8
well interregional
8
alterations distributed
4
distributed neuronal
4
oscillations acute
4
pain
4
pain freely-moving
4
freely-moving mice
4

Similar Publications

Cephalopods produce dynamic colors and skin patterns for communication and camouflage via stratified networks of neuronally actuated yellow, red, and brown chromatophore organs, each filled with thousands of pigment granules. While compositional analysis of chromatophore granules in Doryteuthis pealeii reveals the pigments as ommochromes, the ultrastructural features of the granules and their effects on bulk coloration have not been explored. To investigate this, we isolated granules from specific colored chromatophores and imaged them using multiple modalities.

View Article and Find Full Text PDF

Ondansetron blocks fluoxetine effects in immature neurons in the adult rat piriform cortex layer II.

Neurosci Lett

December 2024

Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain. Electronic address:

Neuronal structural plasticity gives the adult brain the capacity to adapt to internal or external factors by structural and molecular changes. These plastic processes seem to be mediated, among others, by the action of the neurotransmitter serotonin through specific receptors (5-HTRs). Previous studies have shown that the maturation of granule cells in the hippocampus is mediated by 5-HT3.

View Article and Find Full Text PDF

The role of mitochondrial DNA variants and dysfunction in the pathogenesis and progression of multiple sclerosis.

Mitochondrion

December 2024

Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:

Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS). The etiology of MS remains elusive, with a complex interplay of genetic and environmental factors contributing to its pathogenesis. Recent studies showed mitochondrial DNA (mtDNA) as a potential player in the development and progression of MS.

View Article and Find Full Text PDF

Intrinsic plasticity coding improved spiking actor network for reinforcement learning.

Neural Netw

December 2024

School of Artificial Intelligence, Anhui University, Hefei, 230601, Anhui, China; Engineering Research Center of Autonomous Unmanned System Technology, Ministry of Education, Hefei, 230601, Anhui, China; Anhui Provincial Engineering Research Center for Unmanned Systems and Intelligent Technology, Hefei, 230601, Anhui, China; School of Automation, Southeast University, Nanjing, 211189, Jiangsu, China. Electronic address:

Deep reinforcement learning (DRL) exploits the powerful representational capabilities of deep neural networks (DNNs) and has achieved significant success. However, compared to DNNs, spiking neural networks (SNNs), which operate on binary signals, more closely resemble the biological characteristics of efficient learning observed in the brain. In SNNs, spiking neurons exhibit complex dynamic characteristics and learn based on principles of biological plasticity.

View Article and Find Full Text PDF

Integrative studies of diverse neuronal networks that govern social behavior are hindered by a lack of methods to record neural activity comprehensively across the entire brain. The recent development of the miniature fish Danionella cerebrum as a model organism offers one potential solution, as the small size and optical transparency of these animals make it possible to visualize circuit activity throughout the nervous system. Here, we establish the feasibility of using Danionella as a model for social behavior and socially reinforced learning by showing that adult fish exhibit strong affiliative tendencies and that social interactions can serve as the reinforcer in an appetitive conditioning paradigm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!