Introduction: Over 14% of Canadians use cannabis, with nearly 60% of these individuals reporting daily or weekly use. Inhalation of cannabis vapour has recently gained popularity, but the effects of this exposure on neural activity remain unknown. In this study, we assessed the impact of acute exposure to vapourized Δ9-tetrahydrocannabinol (THC) on neural circuit dynamics in rats.

Objectives: We aimed to characterize the changes in neural activity in the dorsal striatum (dStr), orbitofrontal cortex (OFC), and prefrontal cortex (PFC), after acute exposure to THC vapour.

Methods: Rats were implanted with electrode arrays targeting the dStr, OFC, and PFC. Rats were administered THC (or vehicle) using a Volcano® vapourizer and local field potential recordings were performed in a plexiglass chamber in a cross-over design with a week-long washout period.

Results: Decreased spectral power was observed within the dStr, OFC, and PFC in the gamma range (>32-100 Hz) following vapourized THC administration. Most changes in gamma were still present 7 days after THC administration. Decreased gamma coherence was also observed between the OFC-PFC and dStr-PFC region-pairs.

Conclusion: A single exposure to vapourized THC suppresses cortical and dorsal striatal gamma power and coherence, effects that appear to last at least a week. Given the role of gamma hypofunction in schizophrenia, these findings may provide mechanistic insights into the known psychotomimetic effects of THC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494223PMC
http://dx.doi.org/10.1097/cxa.0000000000000063DOI Listing

Publication Analysis

Top Keywords

acute exposure
12
exposure vapourized
12
power coherence
8
neural activity
8
dstr ofc
8
ofc pfc
8
vapourized thc
8
thc administration
8
thc
7
exposure
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!