We present a method to quantify the upper-limit of the energy transmitted from the intense stellar wind to the upper atmospheres of three of the Trappist-1 planets (e, f, and g). We use a formalism that treats the system as two electromagnetic regions, where the efficiency of the energy transmission between one region (the stellar wind at the planetary orbits) to the other (the planetary ionospheres) depends on the relation between the conductances and impedances of the two regions. Since the energy flux of the stellar wind is very high at these planetary orbits, we find that for the case of high transmission efficiency (when the conductances and impedances are close in magnitude), the energy dissipation in the upper planetary atmospheres is also very large. On average, the Ohmic energy can reach 0.5 - 1 , about 1% of the stellar irradiance and 5-15 times the EUV irradiance. Here, using constant values for the ionospheric conductance, we demonstrate that the stellar wind energy could potentially drive large atmospheric heating in terrestrial planets, as well as in hot jupiters. More detailed calculations are needed to assess the ionospheric conductance and to determine more accurately the amount of heating the stellar wind can drive in close-orbit planets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7493050PMC
http://dx.doi.org/10.3847/2041-8213/aab5b5DOI Listing

Publication Analysis

Top Keywords

stellar wind
20
energy dissipation
8
dissipation upper
8
upper atmospheres
8
trappist-1 planets
8
planetary orbits
8
conductances impedances
8
ionospheric conductance
8
energy
7
stellar
6

Similar Publications

Article Synopsis
  • * When the angle between the solar wind’s velocity and its magnetic field is small, Mars experiences a unique induced magnetosphere that causes no shock on the day side and only weak shocks on the sides.
  • * Recent hybrid simulations with a small cone angle align with findings from Mars exploration missions, indicating that these complex induced magnetospheres could play a significant role in atmospheric loss, an area that needs further investigation.
View Article and Find Full Text PDF

Newly formed dust within the circumstellar environment of SN Ia-CSM 2018evt.

Nat Astron

February 2024

Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing, China.

Dust associated with various stellar sources in galaxies at all cosmic epochs remains a controversial topic, particularly whether supernovae play an important role in dust production. We report evidence of dust formation in the cold, dense shell behind the ejecta-circumstellar medium (CSM) interaction in the Type Ia-CSM supernova (SN) 2018evt three years after the explosion, characterized by a rise in mid-infrared emission accompanied by an accelerated decline in the optical radiation of the SN. Such a dust-formation picture is also corroborated by the concurrent evolution of the profiles of the Hα emission line.

View Article and Find Full Text PDF

Fully developed turbulence is a universal and scale-invariant chaotic state characterized by an energy cascade from large to small scales at which the cascade is eventually arrested by dissipation. Here we show how to harness these seemingly structureless turbulent cascades to generate patterns. Pattern formation entails a process of wavelength selection, which can usually be traced to the linear instability of a homogeneous state.

View Article and Find Full Text PDF

Circumstellar material ejected violently by a massive star immediately before its death.

Sci Bull (Beijing)

November 2023

Yunnan Observatories (YNAO), Chinese Academy of Sciences, Kunming 650216, China; Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, China; International Centre of Supernovae, Yunnan Key Laboratory, Kunming 650216, China.

Type II supernovae represent the most common stellar explosions in the Universe, for which the final stage evolution of their hydrogen-rich massive progenitors towards core-collapse explosion are elusive. The recent explosion of SN 2023ixf in a very nearby galaxy, Messier 101, provides a rare opportunity to explore this longstanding issue. With the timely high-cadence flash spectra taken within 1-5 days after the explosion, we can put stringent constraints on the properties of the surrounding circumstellar material around this supernova.

View Article and Find Full Text PDF

Large-scale solar energy production is still a great deal of obstruction due to the unpredictability of solar power. The intermittent, chaotic, and random quality of solar energy supply has to be dealt with by some comprehensive solar forecasting technologies. Despite forecasting for the long-term, it becomes much more essential to predict short-term forecasts in minutes or even seconds prior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!