Climate change has led to a ~ 40% reduction in summer Arctic sea-ice cover extent since the 1970s. Resultant increases in light availability may enhance phytoplankton production. Direct evidence for factors currently constraining summertime phytoplankton growth in the Arctic region is however lacking. GEOTRACES cruise GN05 conducted a Fram Strait transect from Svalbard to the NE Greenland Shelf in summer 2016, sampling for bioessential trace metals (Fe, Co, Zn, Mn) and macronutrients (N, Si, P) at ~ 79°N. Five bioassay experiments were conducted to establish phytoplankton responses to additions of Fe, N, Fe + N and volcanic dust. Ambient nutrient concentrations suggested N and Fe were deficient in surface seawater relative to typical phytoplankton requirements. A west-to-east trend in the relative deficiency of N and Fe was apparent, with N becoming more deficient towards Greenland and Fe more deficient towards Svalbard. This aligned with phytoplankton responses in bioassay experiments, which showed greatest chlorophyll-a increases in + N treatment near Greenland and + N + Fe near Svalbard. Collectively these results suggest primary N limitation of phytoplankton growth throughout the study region, with conditions potentially approaching secondary Fe limitation in the eastern Fram Strait. We suggest that the supply of Atlantic-derived N and Arctic-derived Fe exerts a strong control on summertime nutrient stoichiometry and resultant limitation patterns across the Fram Strait region.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7499181 | PMC |
http://dx.doi.org/10.1038/s41598-020-72100-9 | DOI Listing |
Sci Total Environ
December 2024
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, HGF-MPG Joint Research Group for Deep-Sea Ecology and Technology, Am Handelshafen 12, 27570 Bremerhaven, Germany.
Microplastic (MP) pollution has reached the remotest areas of the globe, including the polar regions. In the Arctic Ocean, MPs have been detected in ice, snow, water, sediment, and biota, but their temporal dynamics remain poorly understood. To better understand the transport pathways and drivers of MP pollution in this fragile environment, this study aims to assess MPs (≥ 11 μm) in sediment trap samples collected at the HAUSGARTEN observatory (Fram Strait) from September 2019 to July 2021.
View Article and Find Full Text PDFSci Adv
November 2024
Key Laboratory of Ocean Observation and Forecasting and Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
PLoS One
November 2024
Ocean Acoustics Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
Nat Commun
November 2024
College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China.
Science
September 2024
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
Mass loss from the Greenland ice sheet has contributed to global sea-level rise over the past 20 years. Yet direct observations from the 79 North Glacier (79NG) calving front reveal decreasing Atlantic Intermediate Water (AIW) temperatures below the ice tongue from 2018 to 2021, leading to reduced ocean heat transport. This is linked to a concurrent decrease in basal melt and thinning rates at the grounding line.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!