Nanocellulose network in the form of cellulose nanopaper is an important material structure and its time-dependent mechanical response is crucial in many of its potential applications. In this work, we report the influences of grammage and strain rate on the tensile response of bacterial cellulose (BC) nanopaper. BC nanopaper with grammages of 20, 40, 60 and 80 g m were tested in tension at strain rates ranging from 0.1% s to 50% s. At strain rates [Formula: see text] 2.5% s, both the tensile modulus and strength of the BC nanopapers stayed constant at ~ 14 GPa and ~ 120 MPa, respectively. At higher strain rates of 25% s and 50% s however, the tensile properties of the BC nanopapers decreased significantly. This observed anomalous tensile response of BC nanopaper is attributed to inertial effect, in which some of the curled BC nanofibres within the nanopaper structure do not have enough time to uncurl before failure at such high strain rates. Our measurements further showed that BC nanopaper showed little deformation under creep, with a secondary creep rate of only ~ 10 s. This stems from the highly crystalline nature of BC, as well as the large number of contact or physical crosslinking points between adjacent BC nanofibres, further reducing the mobility of the BC nanofibres in the nanopaper structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7498453 | PMC |
http://dx.doi.org/10.1038/s41598-020-72153-w | DOI Listing |
PLoS One
January 2025
Department of Biology, Syracuse University, Syracuse, New York, United States of America.
Although we have a good understanding of how phenotypic plasticity evolves in response to abiotic environments, we know comparatively less about responses to biotic interactions. We experimentally tested how competition and mutualism affected trait and plasticity evolution of pairwise communities of genetically modified brewer's yeast. We quantified evolutionary changes in growth rate, resource use efficiency (RUE), and their plasticity in strains evolving alone, with a competitor, and with a mutualist.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
Cotton textiles with persistent antibacterial qualities are crucial in halting the spread of bacteria and other infections. However, fugitive bacteria and drug-resistant pathogens have rendered tremendous challenges in the development of cotton fabrics with long-lasting antibacterial efficacy. The work aimed to innovatively propose a functional cotton fabric integrating intelligent bacteria-capturing and dual antibacterial properties for efficacious personal health management.
View Article and Find Full Text PDFPurpose Of Review: The 2024 mpox outbreak, primarily driven by the possibly more virulent clade Ib strain, prompted the WHO declaring it a public health emergency of international concern (PHEIC) on August 14, 2024. This review provides essential guidance for clinicians managing mpox cases, as it contrasts the features of the 2024 outbreak with those of the 2022 epidemic to support better clinical decision-making.
Recent Findings: The review highlights significant differences between the 2024 and 2022 outbreaks, including total case numbers, demographic distribution, and fatality rates.
J Food Sci
January 2025
Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China.
Fermentation is crucial for inducing desirable flavor and aroma profiles in cocoa products. This research focused on identifying microbial strains isolated from spontaneous cocoa fermentation in Hainan through 16S and Internal Transcribed Spacer (ITS) sequencing. Pectinase activity was screened, and metabolic dynamics of sugars and organic acids were analyzed using high-performance liquid chromatography.
View Article and Find Full Text PDFExp Clin Transplant
December 2024
>From the School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Objectives: Bloodstream infection is one of the main causes of death in hematopoietic stem cell transplant recipients. Acinetobacter baumannii is a bacteria associated with bloodstream infection and subsequent death from high antibiotic resistance in this group of patients. We evaluated bloodstream infections of Acinetobacter baumannii in hematopoietic stem cell transplant recipients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!