Raffinose family oligosaccharides (RFOs) are implicated in plant regulatory mechanisms of abiotic stresses tolerance and, despite their antinutritional proprieties in grain legumes, little information is available about the enzymes involved in RFO metabolism in Fabaceae species. In the present study, the systematic survey of legume proteins belonging to five key enzymes involved in the metabolism of RFOs (galactinol synthase, raffinose synthase, stachyose synthase, alpha-galactosidase, and beta-fructofuranosidase) identified 28 coding-genes in Arachis duranensis and 31 in A. ipaënsis. Their phylogenetic relationships, gene structures, protein domains, and chromosome distribution patterns were also determined. Based on the expression profiling of these genes under water deficit treatments, a galactinol synthase candidate gene (AdGolS3) was identified in A. duranensis. Transgenic Arabidopsis plants overexpressing AdGolS3 exhibited increased levels of raffinose and reduced stress symptoms under drought, osmotic, and salt stresses. Metabolite and expression profiling suggested that AdGolS3 overexpression was associated with fewer metabolic perturbations under drought stress, together with better protection against oxidative damage. Overall, this study enabled the identification of a promising GolS candidate gene for metabolic engineering of sugars to improve abiotic stress tolerance in crops, whilst also contributing to the understanding of RFO metabolism in legume species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7498584 | PMC |
http://dx.doi.org/10.1038/s41598-020-72191-4 | DOI Listing |
Plant Physiol Biochem
December 2024
College of Horticulture, Shenyang Agricultural University, Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, 110866, China. Electronic address:
J Hazard Mater
December 2024
CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India. Electronic address:
Heavy metalloid stress such as arsenic (As) toxicity and nutrient imbalance constitute a significant threat to plant productivity and development. Plants produce sulfur (S)-rich molecules like glutathione (GSH) to detoxify arsenic, but sulfur deficiency worsens its impact. Previous research identified Arabidopsis thaliana ecotypes Koz2-2 (tolerant) and Ri-0 (sensitive) under low-sulfur (LS) and As(III) stress.
View Article and Find Full Text PDFArch Insect Biochem Physiol
December 2024
Biological Control of Insects Research Laboratory, Research Park, USDA Agricultural Research Service, Columbia, Missouri, USA.
RNA interference (RNAi) is a promising technology for controlling insect pests of agriculture. This technology is mediated through the application of double-stranded RNAs (dsRNAs), which are processed within the insect cells into small interfering RNAs (siRNAs). These molecules then target and reduce the expression of the insect-specific genes that can kill or reduce the performance of the pest.
View Article and Find Full Text PDFJ Genet Genomics
December 2024
State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:
Salt stress significantly inhibits crop growth and development, and mitigating this can enhance salt tolerance in various crops. Previous studies have shown that regulating saccharide biosynthesis is a key aspect of plant salt tolerance; however, the underlying molecular mechanisms remain largely unexplored. In this study, we demonstrate that overexpression of a salt-inducible galactinol synthase gene, ZmGolS1, alleviates salt-induced growth inhibition, likely by promoting raffinose synthesis.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A. C., San Luis Potosí, S.L.P. 78216, Mexico.
Cold stress impedes the growth and development of plants, restricts the geographical distribution of plant species, and impacts crop productivity. In this study, we analyzed the transcriptome to identify differentially expressed genes (DEGs) in 14-day-old plantlets exposed to temperatures of 0 °C, 4 °C, and 10 °C for 24 h, compared to the 22 °C control group. Among the top 50 cold-induced genes at each temperature, we identified 31 genes that were common across all three low temperatures, with nine genes common to 0-4 °C, eight genes to 4-10 °C, and two genes to 0-10 °C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!