Without changes in consumption, along with sharp reductions in food waste and postharvest losses, agricultural production must grow to meet future food demands. The variety of concepts and policies relating to yield increases fail to integrate an important constituent of production and human nutrition - biodiversity. We develop an analytical framework to unpack this biodiversity-production mutualism (BPM), which bridges the research fields of ecology and agroeconomics and makes the trade-off between food security and protection of biodiversity explicit. By applying the framework, the incorporation of agroecological principles in global food systems are quantifiable, informed assessments of green total factor productivity (TFP) are supported, and possible lock-ins of the global food system through overintensification and associated biodiversity loss can be avoided.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tree.2020.06.012 | DOI Listing |
Mol Plant
January 2025
Center for Applied Genetic Technologies, University of Georgia, Athens, USA.
Soybean, the fourth most important crop in the world, uniquely serves as a source of both plant oil and plant protein for the world's food and animal feed. Although soybean production has increased approximately 13-fold over the past 60 years, the continually growing global population necessitates further increases in soybean production. In the past, especially in the last decade, significant progress has been made in both functional genomics and molecular breeding.
View Article and Find Full Text PDFViruses
December 2024
APC Microbiome Ireland, School of Microbiology, University College Cork, College Road, T12 K8AF Cork, Ireland.
Access to safe water and food is a critical issue in sub-Saharan Africa, where microbial contamination poses significant health risks. Conventional water treatment and food preservation methods have limitations in addressing water safety, particularly for antibiotic-resistant bacteria and other pathogenic microorganisms. This review explores the potential application of bacteriophages as an innovative solution for water treatment and food safety in the region.
View Article and Find Full Text PDFViruses
December 2024
Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada.
Bats are recognized as natural reservoirs for an array of diverse viruses, particularly coronaviruses, which have been linked to major human diseases like SARS-CoV and MERS-CoV. These viruses are believed to have originated in bats, highlighting their role in virus ecology and evolution. Our study focuses on the molecular characterization of bat-derived coronaviruses (CoVs) in Canada.
View Article and Find Full Text PDFViruses
November 2024
Microbiology and Clinical Microbiology Section, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy.
Hepatitis E virus (HEV) is a global health problem, causing an estimated 20 million infections annually. Thus, the management of HEV requires special consideration. In developed countries, hepatitis E is mainly recognized as a foodborne disease (mainly transmitted via undercooked meat consumption) that is generally caused by genotype 3 and 4 circulating in various animals, including pigs and wild boars.
View Article and Find Full Text PDFViruses
November 2024
College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
Rice is a crucial staple food for over half the global population, and viral infections pose significant threats to rice yields. This study focuses on the Rice Stripe Virus (RSV), which is known to drastically reduce rice productivity. We employed RNA-seq and ribosome profiling to analyze the transcriptional and translational responses of RSV-infected rice seedlings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!