Choline plays a crucial role in lipid metabolism for fish, and its deficiency in aquafeed has been linked to compromised health and growth performance. A 56-d experiment was conducted to examine the effects of dietary choline on lipid composition, histology and plasma biochemistry of yellowtail kingfish (Seriola lalandi; YTK; 156 g initial body weight). The dietary choline content ranged from 0·59 to 6·22 g/kg diet. 2-Amino-2-methyl-1-propanol (AMP) (3 g/kg) was added to diets, except for a control diet, to limit de novo choline synthesis. The results showed that the liver lipid content of YTK was similar among diets containing AMP and dominated by NEFA. In contrast, fish fed the control diet had significantly elevated liver TAG. Generally, the SFA, MUFA and PUFA content of liver lipid in fish fed diets containing AMP was not influenced by choline content. The SFA and MUFA content of liver lipid in fish fed the control diet was similar to other diets except for a decrease in PUFA. The linear relationship between lipid digestibility and plasma cholesterol was significant, otherwise most parameters were unaffected. When AMP is present, higher dietary choline reduced the severity of some hepatic lesions. The present study demonstrated that choline deficiency affects some plasma and liver histology parameters in juvenile YTK which might be useful fish health indicators. Importantly, the present study elucidated potential reasons for lower growth in choline-deficient YTK and increased the knowledge on choline metabolism in the fish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0007114520003669 | DOI Listing |
Nutrients
December 2024
Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Background/objectives: Polyphenols represent a new strategy of dietary intervention for heat stress regulation.
Methods: The metabolic and genetic effects of three heat stress-regulated mung bean polyphenols on mouse small intestinal epithelial Mode-k cells were investigated by metabolomics-transcriptomics correlation analysis at different heat stress levels.
Results: Lipid metabolism, energy metabolism, and nervous system pathways were the key metabolic regulatory pathways.
Plants (Basel)
December 2024
Innovative Research Unit of Epithelial Transport and Regulation (iETR), Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is linked to choline metabolism. The present study investigated the effect of holy basil ( L.) flower water extract (OSLY) on MASLD with choline metabolism as an underlying mechanism.
View Article and Find Full Text PDFCell Rep
January 2025
Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA. Electronic address:
Hepatic stellate cells (HSCs) are key drivers of local fibrosis. Adiponectin, conventionally thought of as an adipokine, is also expressed in quiescent HSCs. However, the impact of its local expression on the progression of liver fibrosis remains unclear.
View Article and Find Full Text PDFRedox Biol
January 2025
Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China. Electronic address:
Inflammatory mediators tumor necrosis factor (TNF) and interleukin 1 beta (IL1β), primarily derived from hepatic macrophages in the liver, play a crucial role in the progression of nonalcoholic steatohepatitis (NASH). Meanwhile, intravenously injected exosomes are mainly distributed in the liver and predominantly taken up by hepatic macrophage. Herein, we aimed to evaluate the feasibility of targeted inhibition of TNF and IL1β expression in hepatic macrophages via exosomes as a potential therapeutic strategy for NASH.
View Article and Find Full Text PDFNutrients
December 2024
School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia.
Background/objectives: Thus far, no studies have examined the relationship between fruit and vegetable (F and V) intake, urinary metabolite quantities, and weight change. Therefore, the aim of the current study was to explore changes in urinary metabolomic profiles during and after a 10-week weight loss intervention where participants were prescribed a high F and V diet (7 servings daily).
Methods: Adults with overweight and obesity ( = 34) received medical nutrition therapy counselling to increase their F and V intakes to national targets (7 servings a day).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!