Fault Detection and Isolation Methods in Subsea Observation Networks.

Sensors (Basel)

State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.

Published: September 2020

Subsea observation networks have gradually become the main means of deep-sea exploration. The reliability of the observation network is greatly affected by the severe undersea conditions. This study mainly focuses on theoretical research and the experimental platform verification of high-impedance and open-circuit fault detection for an underwater observation network. With the aid of deep learning, we perform the fault detection and prediction of the network operation. For the high-impedance and open-circuit fault detection of submarine cables, the entire system is modeled and simulated, and the voltage and current values of the operating nodes under different fault types are collected. Numerous calibrated data samples are supervised by a deep learning algorithm, and a fault location system model is built in the laboratory to verify the feasibility and superiority of the scheme. This paper also studies the fault isolation of the observation network, focusing on the communication protocol and the design of the fault isolation system. Experimental results verify the effectiveness of the proposed algorithm for the location and prediction of high-impedance and open-circuit faults, and the feasibility of the fault isolation system has also been verified. Moreover, the proposed methods greatly improve the reliability of undersea observation network systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571193PMC
http://dx.doi.org/10.3390/s20185273DOI Listing

Publication Analysis

Top Keywords

fault detection
16
observation network
16
high-impedance open-circuit
12
fault isolation
12
fault
9
subsea observation
8
observation networks
8
open-circuit fault
8
deep learning
8
isolation system
8

Similar Publications

Accurate, practical, and robust evaluation of the battery state of health is crucial to the efficient and reliable operation of electric vehicles. However, the limited availability of large-scale, high-quality field data hinders the development of the battery management system for state of health estimation, lifetime prediction, and fault detection in various applications. In this work, to gain insights into underlying factors limiting battery management system performance in real-world vehicles, we analyze the operational data of 300 diverse electric vehicles over three years to understand the disparities between field data and laboratory battery test data and their effect on state of health estimation.

View Article and Find Full Text PDF

Hadoop in Banking: Event-Driven Performance Evaluation.

ScientificWorldJournal

January 2025

Department of Computer Science and Information Technology, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India.

In today's data-intensive atmosphere, performance evaluation in the banking industry depends on timely and accurate insights, leading to better decision making and operational efficiency. Traditional methods for assessing bank performance often need to be improved to handle the volume, velocity, and variety of data generated in real time. This study proposes an event-driven approach for performance evaluation in banking alongside a Hadoop-based architecture.

View Article and Find Full Text PDF

This study presents a comprehensive workflow to detect low seismic amplitude gas fields in hydrocarbon exploration projects, focusing on the West Delta Deep Marine (WDDM) concession, offshore Egypt. The workflow integrates seismic spectral decomposition and machine learning algorithms to identify subtle anomalies, including low seismic amplitude gas sand and background amplitude water sand. Spectral decomposition helps delineate the fairway boundaries and structural features, while Amplitude Versus Offset (AVO) analysis is used to validate gas sand anomalies.

View Article and Find Full Text PDF

Induction motors are essential components in industry due to their efficiency and cost-effectiveness. This study presents an innovative methodology for automatic fault detection by analyzing images generated from the Fourier spectra of current signals using deep learning techniques. A new preprocessing technique incorporating a distinctive background to enhance spectral feature learning is proposed, enabling the detection of four types of faults: healthy motor coupled to a generator with a broken bar (HGB), broken rotor bar (BRB), race bearing fault (RBF), and bearing ball fault (BBF).

View Article and Find Full Text PDF

A Comprehensive Survey on the Integrity of Localization Systems.

Sensors (Basel)

January 2025

Inria-ASTRA Team, 48 Rue Barrault, 75013 Paris, France.

This survey extends and refines the existing definitions of integrity and protection level in localization systems (localization as a broad term, i.e., not limited to GNSS-based localization).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!