Cancer has adverse effects on male reproductive health. Conventional semen analysis does not explain the molecular changes in the spermatozoa of cancer patients. Currently, proteomics is being widely used to identify the fertility-associated molecular pathways affected in spermatozoa. The objective of this study was to evaluate the sperm proteome of patients with various types of cancer. Cryopreserved semen samples from patients (testicular cancer, = 40; Hodgkin's disease, = 32; lymphoma, = 20; leukemia, = 17) before starting therapy were used for proteomic analysis, while samples from fertile donors ( = 19) were included as controls. The proteomic profiling of sperm was carried out by liquid chromatography-tandem mass spectrometry, and differentially expressed proteins involved in the reproductive processes were validated by Western blotting. Bioinformatic analysis revealed that proteins associated with mitochondrial dysfunction, oxidative phosphorylation, and Sirtuin signaling pathways were dysregulated in cancer patients, while oxidative phosphorylation and tricarboxylic acid cycle were predicted to be deactivated. Furthermore, the analysis revealed dysregulation of key proteins associated with sperm fertility potential and motility (NADH:Ubiquinone oxidoreductase core subunit S1, superoxide dismutase 1, SERPINA5, and cytochrome b-c1 complex subunit 2) in the cancer group, which were further validated by Western blot. Dysfunctional molecular mechanisms essential for fertility in cancer patients prior to therapy highlight the potential impact of cancer phenotype on male fertility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554694PMC
http://dx.doi.org/10.3390/ijms21186754DOI Listing

Publication Analysis

Top Keywords

cancer patients
16
proteins associated
12
cancer
9
dysregulation key
8
key proteins
8
associated sperm
8
fertility potential
8
validated western
8
analysis revealed
8
oxidative phosphorylation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!