If deterministic dynamics is dominant in the data, then methods based on predictions in reconstructed state spaces can serve to detect causal relationships between and within the systems. Here we introduce two algorithms for such causal analysis. They are designed to detect causality from two time series but are potentially also applicable in a multivariate context. The first method is based on cross-predictions, and the second one on the so-called mixed predictions. In terms of performance, the cross-prediction method is considerably faster and less prone to false negatives. The predictability improvement method is slower, but in addition to causal detection, in a multivariate scenario, it also reveals which specific observables can help the most if we want to improve prediction. The study also highlights cases where our methods and state-space approaches generally seem to lose reliability. We propose a new perspective on these situations, namely that the variables under investigation have weak observability due to the complex nonlinear information flow in the system. Thus, in such cases, the failure of causality detection cannot be attributed to the methods themselves but to the use of data that do not allow reliable reconstruction of the underlying dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.102.022203 | DOI Listing |
Transfusion
January 2025
Infectious Disease Consultant, North Potomac, Maryland, USA.
Background: US blood donors are tested for syphilis because the bacterial agent is transfusion transmissible. Here we describe trends over an 11-year period of donations positive for recent and past syphilis infections, and donations classified as syphilis false positive (FP).
Methods: Data from January 1, 2013, to December 31, 2023 (11 years) were compiled for all American Red Cross blood donations to evaluate demographics/characteristics and longitudinal trends in donors testing syphilis reactive/positive.
Eur J Dent Educ
January 2025
QU Health College of Dental Medicine, Qatar University, Doha, Qatar.
Aims: This study aimed to evaluate the impact of community-based dental education (CBDE) on the learning experiences of undergraduate dental students and recent dental graduates from two diverse geographical regions.
Methods: The study followed a cross-sectional design, conducted online using Google Forms, with ethical approval from Qatar University. A non-probability purposive sampling method was used to recruit dental students and recent graduates from three institutions in India and one in Qatar.
Med Phys
January 2025
Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
Background: Kidney tumors, common in the urinary system, have widely varying survival rates post-surgery. Current prognostic methods rely on invasive biopsies, highlighting the need for non-invasive, accurate prediction models to assist in clinical decision-making.
Purpose: This study aimed to construct a K-means clustering algorithm enhanced by Transformer-based feature transformation to predict the overall survival rate of patients after kidney tumor resection and provide an interpretability analysis of the model to assist in clinical decision-making.
Med Phys
January 2025
OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.
Background: Patient-specific quality assurance (PSQA) is a crucial yet resource-intensive task in proton therapy, requiring special equipment, expertise and additional beam time. Machine delivery log files contain information about energy, position and monitor units (MU) of all delivered spots, allowing a reconstruction of the applied dose. This raises the prospect of phantomless, log file-based QA (LFQA) as an automated replacement of current phantom-based solutions, provided that such an approach guarantees a comparable level of safety.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
Background: Diffusing alpha-emitters Radiation Therapy ("Alpha DaRT") is a promising new radiation therapy modality for treating bulky tumors. Ra-carrying sources are inserted intratumorally, producing a therapeutic alpha-dose region with a total size of a few millimeter via the diffusive motion of Ra's alpha-emitting daughters. Clinical studies of Alpha DaRT have reported 100% positive response (30%-100% shrinkage within several weeks), with post-insertion swelling in close to half of the cases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!