A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enskog kinetic theory of rheology for a moderately dense inertial suspension. | LitMetric

Enskog kinetic theory of rheology for a moderately dense inertial suspension.

Phys Rev E

Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEX), Universidad de Extremadura, E-06006 Badajoz, Spain.

Published: August 2020

The Enskog kinetic theory for moderately dense inertial suspensions under simple shear flow is considered as a model to analyze the rheological properties of the system. The influence of the background fluid on suspended particles is modeled via a viscous drag force plus a Langevin-like term defined in terms of the background temperature. In a previous paper [Hayakawa et al., Phys. Rev. E 96, 042903 (2017)10.1103/PhysRevE.96.042903], Grad's moment method with the aid of a linear shear-rate expansion was employed to obtain a theory which gave good agreement with the results of event-driven Langevin simulations of hard spheres for low densities and/or small shear rates. Nevertheless, the previous approach had a limitation of not being applicable to the high-shear-rate and high-density regime. Thus, in the present paper, we extend the previous work and develop Grad's theory including higher-order terms in the shear rate. This improves significantly the theoretical predictions, a quantitative agreement between theory and simulation being found in the high-density region (volume fractions smaller than or equal to 0.4).

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.102.022907DOI Listing

Publication Analysis

Top Keywords

enskog kinetic
8
kinetic theory
8
moderately dense
8
dense inertial
8
theory
5
theory rheology
4
rheology moderately
4
inertial suspension
4
suspension enskog
4
theory moderately
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!