Extreme events for fractional Brownian motion with drift: Theory and numerical validation.

Phys Rev E

Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 24 rue Lhomond, 75005 Paris, France.

Published: August 2020

We study the first-passage time, the distribution of the maximum, and the absorption probability of fractional Brownian motion of Hurst parameter H with both a linear and a nonlinear drift. The latter appears naturally when applying nonlinear variable transformations. Via a perturbative expansion in ɛ=H-1/2, we give the first-order corrections to the classical result for Brownian motion analytically. Using a recently introduced adaptive-bisection algorithm, which is much more efficient than the standard Davies-Harte algorithm, we test our predictions for the first-passage time on grids of effective sizes up to N_{eff}=2^{28}≈2.7×10^{8} points. The agreement between theory and simulations is excellent, and by far exceeds in precision what can be obtained by scaling alone.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.102.022102DOI Listing

Publication Analysis

Top Keywords

brownian motion
12
fractional brownian
8
first-passage time
8
extreme events
4
events fractional
4
motion drift
4
drift theory
4
theory numerical
4
numerical validation
4
validation study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!