Multiligament knee injury (MLKI) typically requires surgical reconstruction to achieve the optimal outcomes for patients. Revision and failure rates after surgical reconstruction for MLKI can be as high as 40%, suggesting the need for improvements in graft constructs and implantation techniques. This study assessed novel graft constructs and surgical implantation and fixation techniques for anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), posterior medial corner (PMC), and posterior lateral corner (PLC) reconstruction. Study objectives were (1) to describe each construct and technique in detail, and (2) to optimize MLKI reconstruction surgical techniques using these constructs so as to consistently implant grafts in correct anatomical locations while preserving bone stock and minimizing overlap. Cadaveric knees ( = 3) were instrumented to perform arthroscopic-assisted and open surgical creation of sockets and tunnels for all components of MLKI reconstruction using our novel techniques. Sockets and tunnels with potential for overlap were identified and assessed to measure the minimum distances between them using gross, computed tomographic, and finite element analysis-based measurements. Percentage of bone volume spared for each knee was also calculated. Femoral PLC-lateral collateral ligament and femoral PMC sockets, as well as tibial PCL and tibial PMC posterior oblique ligament sockets, were at high risk for overlap. Femoral ACL and femoral PLC lateral collateral ligament sockets and tibial popliteal tendon and tibial posterior oblique ligament sockets were at moderate risk for overlap. However, with careful planning based on awareness of at-risk MLKI graft combinations in conjunction with protection of the socket/tunnel and trajectory adjustment using fluoroscopic guidance, the novel constructs and techniques allow for consistent surgical reconstruction of all major ligaments in MLKIs such that socket and tunnel overlap can be consistently avoided. As such, the potential advantages of the constructs, including improved graft-to-bone integration, capabilities for sequential tensioning of the graft, and bone sparing effects, can be implemented.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0040-1716355DOI Listing

Publication Analysis

Top Keywords

graft constructs
12
surgical reconstruction
12
ligament sockets
12
multiligament knee
8
knee injury
8
constructs techniques
8
cruciate ligament
8
pmc posterior
8
mlki reconstruction
8
sockets tunnels
8

Similar Publications

Objective: To explore the risk factors associated with postoperative atrial fibrillation (POAF) after off-pump coronary artery bypass grafting (OPCABG) and to construct a nomogram predictive model.

Methods: In this retrospective cohort study, clinical data of 193 patients who received OPCABG in Huai'an First People's Hospital Affiliated to Nanjing Medical University from June 2021 to November 2023 were retrospectively analyzed. Based on the established diagnosis of POAF, patients were divided into the POAF group (n=75) and the non-POAF group (n=118).

View Article and Find Full Text PDF

Background: The fluorescent dye indocyanine green (ICG) has been used to identify anatomical structures intraoperatively in coronary artery bypass grafting (CABG). This study aimed to evaluate the feasibility of using ICG to assess graft patency and territorial distribution of myocardial reperfusion during CABG.

Methods: Porcine arrested hearts (n = 18) were used to evaluate territorial distribution of native coronary arteries and of a coronary bypass constructed with porcine saphenous vein graft (SVG) using ICG.

View Article and Find Full Text PDF

Islet transplantation and more recently stem cell-derived islets were shown to successfully re-establish glycemic control in people with type 1 diabetes under immunosuppression. These results were achieved through intraportal infusion which leads to early graft losses and limits the capacity to contain and retrieve implanted cells in case of adverse events. Extra-hepatic sites and encapsulation devices have been developed to address these challenges and potentially create an immunoprotective or immune-privileged environment.

View Article and Find Full Text PDF

Deciphering cell states and the cellular ecosystem to improve risk stratification in acute myeloid leukemia.

Brief Bioinform

November 2024

State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang'an South Road, Xiamen, Fujian 361102, China.

Acute myeloid leukemia (AML) demonstrates significant cellular heterogeneity in both leukemic and immune cells, providing valuable insights into clinical outcomes. Here, we constructed an AML single-cell transcriptome atlas and proposed sciNMF workflow to systematically dissect underlying cellular heterogeneity. Notably, sciNMF identified 26 leukemic and immune cell states that linked to clinical variables, mutations, and prognosis.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) is a highly sensitive technology to detect target analytes. The construction of dynamic "hot-spots" represents a significant approach to enhancing detection sensitivity. Herein, a hybrid plasma platform with dynamic "hot-spots" was developed for SERS recognition based on the assembly of gold nanospheres (AuNSs) on temperature-sensitive bacterial cellulose (BC) film grafted with poly(N-isopropylacrylamide) (PNIPAM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!