Severe caloric-restriction compromises thyroid hormone (TH) status, apparently to save energy and proteins for enduring stress stimulus. However, a persistent decrease in TH levels may compromise heart function. We hypothesized that supplementation of low dose active TH or targeting hypoxia-inducible factor-1-alpha, HIF-1α (a strong activator of deiodinase enzyme that degrades peripheral active THs) will prevent deterioration of cardiac performance. Adult mice were subjected to acute fasting based on institutional animal protocols with ad libitum access to water. The following groups were studied: Control mice with free access to food; severe caloric restriction fasting only group; Fasting with Triiodo-l-Thyronine (T3); Fasting with HIF-1α inhibitor (BAY). Cardiac hemodynamic and electrophysiological studies were performed and role of long noncoding RNAs were explored. Following severe caloric-restriction, we found that body weights, and heart weights to a partial extent, were decreased. Low-dose T3 treatment attenuated left ventricular hemodynamic impairment in indices of cardiac contractility and relaxation. In electrophysiology studies, fasting mice developed atrial tachyarrhythmias upon induction. This reverted to control levels following T3 treatment. There was a significant increase in atrioventricular conduction time and significant decrease in heart rate following fasting. Both these changes were attenuated following T3 treatment. Furthermore, BAY partially improved hemodynamics. Compared to the severe caloric-restriction group, both T3 and BAY reduced MALAT1 and GAS5 long noncoding RNA expression. These new findings indicate that T3 and BAY protect from cardiac decompensation secondary to acute severe caloric-restriction partly mediated by long noncoding RNAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2020.110657 | DOI Listing |
Cancer Med
January 2025
Department of Gastrointestinal Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, China.
Background: Lymphatic metastasis in gastric cancer (GC) profoundly influences its prognosis, but the precise mechanism remains elusive. In this study, we identified the long noncoding RNA MIR181A2HG as being upregulated in GC and associated with LNs metastasis and prognosis.
Methods: The expression of MIR181A2HG in GC was identified through bioinformatics screening analysis and qRT-PCR validation.
Heliyon
February 2024
Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.
Hepatopulmonary syndrome (HPS) is a severe lung injury caused by chronic liver disease, with limited understanding of the disease pathology. Exosomes are important mediators of intercellular communication that modulates various cellular functions by transferring a variety of intracellular components to target cells. Our recent studies have indicated that a new long noncoding RNA (lncRNA), PICALM-AU1, is mainly expressed in cholangiocytes, and is dramatically induced in the liver during HPS.
View Article and Find Full Text PDFFront Med
January 2025
Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China.
Diabetic cardiomyopathy (DCM) is a medical condition characterized by cardiac remodeling and dysfunction in individuals with diabetes mellitus. Sarcoplasmic reticulum (SR) and mitochondrial Ca overload in cardiomyocytes have been recognized as biological hallmarks in DCM; however, the specific factors underlying these abnormalities remain largely unknown. In this study, we aimed to investigate the role of a cardiac-specific long noncoding RNA, D830005E20Rik (Trdn-as), in DCM.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
Prostate cancer (PC) ranks among the most prevalent cancers in males. Recent studies have highlighted intricate connections between long non-coding RNAs (lncRNAs), natural products, and cellular signaling in PC development. LncRNAs, which are RNA transcripts without protein-coding function, influence cell growth, programmed cell death, metastasis, and resistance to treatments through pathways like PI3K/AKT, WNT/β-catenin, and androgen receptor signaling.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, 18Th Zhongshan 2Nd Road, Baise, 533000, Guangxi, China.
A growing body of evidence suggests the involvement of long noncoding ribose nucleic acids (lncRNAs) in acute kidney injury (AKI). This study focused on the mechanistic role of lncRNA small nucleolar RNA host gene 12 (SNHG12) in ischemia/reperfusion (I/R)-mediated AKI. A model of hypoxia/reoxygenation (H/R) was created using human kidney cells (HK-2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!