In order to limit and slow the development of diseases, they have to be diagnosed early as possible to treat patients in a better and more rapid manner. In this paper, we focus on a noninvasive and quick method based on diffuse fields in elastography to detect diseases that affect the stiffness of organs. To validate our method, a phantom experiment numerically pre-validated is designed. It consists of seven vibrators that generate white noises in a bandwidth of [80-300] Hz and then a complex acoustic field in a phantom. Waves are tracked by a linear ultrasound probe L11-4v linked to a Verasonics Vantage System and are converted into a particle velocity 2D map as a function of time. The phase velocity of the shear waves is calculated using a temporal and 2D spatial Fourier transform and an adapted signal-processing method. Shear wave velocity dispersion measurement in the frequency bandwidth of the vibrators enables one to characterize the dynamic hardness of the material through the viscoelastic parameters μ and η in an acquisition time shorter than a second (T = 300 ms). With the aim of estimating the consistency of the method, the experiment is performed N = 10 times. The measured elastic modulus and viscous parameter that quantify the dynamic properties of the medium correspond to the expected values: μ = 1.23 ± 0.05 kPa and η = 0.51 ± 0.09 Pa∙s.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultras.2020.106239 | DOI Listing |
World J Gastroenterol
January 2025
Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, China.
In this article, we comment on the article by Cheng published in recently. Posthepatectomy liver failure (PHLF) remains a leading cause of hepatectomy-related mortality and can be evaluated according to liver reserve function. Liver stiffness (LS) measured by ultrasonic elastography and spleen area demonstrate a strong correlation with hepatic proliferation, fibrosis, and portal vein congestion, thus indirectly reflecting liver reserve function.
View Article and Find Full Text PDFJ Clin Ultrasound
January 2025
Department of Ultrasonography, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Purpose: This study evaluates the effectiveness of lacrimal gland ultrasonography (LGUS) and shear wave elastography (SWE) in distinguishing primary Sjögren's syndrome (PSS) patients from healthy controls and examines their role in assessing disease activity and prognosis.
Methods: A total of 35 PSS patients and 23 age- and gender-matched healthy controls were included. LGUS was used to grade lacrimal gland structure, while SWE assessed gland elasticity.
J Magn Reson Imaging
January 2025
Department of Radiology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Shenzhen, China.
Background: Multifrequency MR elastography (mMRE) enables noninvasive quantification of renal stiffness in patients with chronic kidney disease (CKD). Manual segmentation of the kidneys on mMRE is time-consuming and prone to increased interobserver variability.
Purpose: To evaluate the performance of mMRE combined with automatic segmentation in assessing CKD severity.
Innovation (Camb)
January 2025
Center for High Pressure Science and Technology Advanced Research, Beijing 100193, China.
The steep temperature gradient near the bottom of the mantle is known to generate a negative correlation between the shear wave velocity ( ) and the depth in most regions of the D″ layer, as detected by seismological observations. However, increasing with depth is observed at the D″ layer beneath Central America, where the Farallon slab sinks, and the origin of this anomaly has not been well constrained. Here, we calculate the thermoelastic constants and obtain the elastic wave velocities of hydrous phase H with various Al contents and cation configurations, which may act as a water carrier to the D″ layer.
View Article and Find Full Text PDFInt J Cardiovasc Imaging
January 2025
Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!