In this study, an enzymatic pathway has been developed to replicate the Calvin Cycle by creating the individual steps of the carbon cycle in a bioreactor. The technology known as "artificial photosynthesis" converts CO2 emissions into a variety of intermediates that serve as precursors to high-value products. CO2, light, water, and electricity were used as feedstock. An electrochemical reactor was also studied for the regeneration of active NADH operating at constant electrode potential. Initially, a batch electrochemical reactor containing 80 mL of 0.2 mM NAD+ in Tris-buffer (pH 7.40) was used to evaluate the electrode material operating at normal temperature and pressure. The results showed that the cathode is highly electrocatalytically efficient and selective to regenerate 97.45±0.8% of NADH from NAD+ at electrode potential of -2.3 V vs. mercury standard electrode (MSE). The NADH regeneration system was then integrated with ATP regeneration system and bioreactor containing Ribulose bisphosphate carboxylase/oxygenase (RuBisCO). NADH was regenerated successfully during the process electrochemically and then was used by the enzymatic reaction to produce triose phosphate and 3-Phosphoglycerate (3GPA).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497995 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239340 | PLOS |
Int J Biol Macromol
January 2025
Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China. Electronic address:
In the fiber industry, cotton (Gossypium hirsutum L.) is an important crop. One of the most important morphology traits of plants is the color of the anthers, is closely related to pollen fertility and stress resistance.
View Article and Find Full Text PDFSci Total Environ
January 2025
State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China. Electronic address:
Understanding metabolic activities involved in bloom formation during a single-species algal bloom has improved greatly. However, little is known about metabolic activities during a multi-species algal bloom. Here, we investigated protein expression profiles at different bloom stages of a mixed dinoflagellate bloom caused by Karenia mikimotoi and Prorocentrum obtusidens (syn.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
The sluggish water oxidation reaction (WOR) is considered the kinetic bottleneck of artificial photosynthesis due to the complicated four-electron and four-proton transfer process. Herein, we find that the WOR can be kinetically nearly barrierless on four representative photoanodes (i.e.
View Article and Find Full Text PDFMetab Eng
January 2025
Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan; Research Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan. Electronic address:
Polyhydroxyalkanoate (PHA) is an attractive bio-degradable plastic alternative to petrochemical plastics. Photosynthetic cyanobacteria accumulate biomass by fixing atmospheric CO, making them promising hosts for sustainable PHA production. Conventional PHA production in cyanobacteria requires prolonged cultivation under nutrient limitation to accumulate cellular PHA.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing 100871, People's Republic of China.
Phycobilisomes (PBS) are the major photosynthetic light-harvesting complexes in cyanobacteria and red algae. While the structures of PBS have been determined in atomic resolutions, how PBS are attached to the reaction centers of photosystems remains less clear. Here, we report that a linker protein (LcpA) is required for the attachment of PBS to photosystem II (PSII) in the cyanobacterium sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!