Impact of Aging and the Electrode-to-Neural Interface on Temporal Processing Ability in Cochlear-Implant Users: Gap Detection Thresholds.

Trends Hear

Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, United States.

Published: November 2020

Accurate processing of temporal information is critical to understanding speech through a cochlear implant (CI). This has potential implications for the growing population of CI users who are ≥65 years of age because of age-related auditory temporal processing deficits. The goal of this study was to measure temporal processing ability in a gap detection task in younger, middle-aged, and older CI users and to determine the relative contributions of chronological age and peripheral neural survival to performance. Single-electrode gap detection thresholds (GDTs) were measured using direct stimulation at five electrode locations and three electrical stimulation rates. The relationship between peripheral status (e.g., electrode-to-neural interface) and GDTs was assessed by the slope of the electrically evoked compound action potential (ECAP) amplitude growth function. Results showed that ECAP slope was the strongest subject-level predictor of GDTs. Steeper ECAP slopes, which are partially indicative of better peripheral function, were associated with better GDTs in younger participants. However, ECAP slope significantly interacted with stimulation rate and age, suggesting that ECAP slopes were not predictive of GDTs in middle-aged and older participants at some stimulation rates. ECAP slope was also related to age, with middle-aged and older participants exhibiting relatively shallow slopes and smaller ranges of slopes compared with younger participants. This pattern of ECAP results limited the evaluation of the independent effects of aging per se and peripheral status on temporal processing ability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7502859PMC
http://dx.doi.org/10.1177/2331216520956560DOI Listing

Publication Analysis

Top Keywords

temporal processing
16
processing ability
12
gap detection
12
middle-aged older
12
ecap slope
12
electrode-to-neural interface
8
detection thresholds
8
stimulation rates
8
peripheral status
8
ecap slopes
8

Similar Publications

Previous studies have shown that astrocyte activation in the anterior cingulate cortex (ACC), accompanied by upregulation of the astrocyte marker S100 calcium binding protein B (S100B), contributes to comorbid anxiety in chronic inflammatory pain (CIP), but the exact downstream mechanism is still being explored. The receptor for advanced glycation end-products (RAGE) plays an important role in chronic pain and psychosis by recognizing ligands, including S100B. Therefore, we speculate that RAGE may be involved in astrocyte regulation of the comorbidity between CIP and anxiety by recognizing S100B.

View Article and Find Full Text PDF

With climate extremes' rising frequency and intensity, robust analytical tools are crucial to predict their impacts on terrestrial ecosystems. Machine learning techniques show promise but require well-structured, high-quality, and curated analysis-ready datasets. Earth observation datasets comprehensively monitor ecosystem dynamics and responses to climatic extremes, yet the data complexity can challenge the effectiveness of machine learning models.

View Article and Find Full Text PDF

Kinetics of recovery and normalization of running biomechanics following aerobic-based exercise-induced muscle damage in recreational male runners.

J Sci Med Sport

January 2025

Department of Health Promotion, School of Public Health, Faculty of Medical and Health Sciences, Sylvan Adams Sports Institute, Tel-Aviv University, Israel. Electronic address:

Objectives: The study aimed to examine the effects of exercise-induced muscle damage on running kinetics.

Design: Twenty-six adult recreational male runners performed 60 min of downhill running (-10 %) at 65 % of maximal heart rate. Running gait changes, systemic and localized muscle damage markers were assessed pre - and post-exercise induced muscle damage protocol.

View Article and Find Full Text PDF

Introduction: Patients with peripheral artery disease (PAD) can experience intermittent claudication, which limits walking capacity and the ability to undertake daily activities. While exercise therapy is an established way to improve walking capacity in people with PAD, it is not feasible in all patients. Neuromuscular electrical stimulation (NMES) provides a way to passively induce repeated muscle contractions and has been widely used as a therapy for chronic conditions that limit functional capacity.

View Article and Find Full Text PDF

Goal: Current methodologies for assessing cerebral compliance using pressure sensor technologies are prone to errors and issues with inter- and intra-observer consistency. RAP, a metric for measuring intracranial compensatory reserve (and therefore compliance), holds promise. It is derived using the moving correlation between intracranial pressure (ICP) and the pulse amplitude of ICP (AMP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!