This is the first report of an atomic-scale direct oxidation mechanism of the thiol group in glutathione (GSH) by epoxides on graphene oxide (GO) at room temperature. The proposed reaction mechanism is determined using a coupled experimental and computational approach; active sites for the reaction are determined through examination of GO surface chemistry changes before and after exposure to GSH, and density functional theory (DFT) calculations determine the reaction barriers for the possible GO-GSH reaction schemes. The findings build on the previously established catalytic mechanism of GSH oxidation by graphenic nanocarbon surfaces and importantly identify the direct reaction mechanism which becomes important in low-oxygen environments. Experimental results suggest epoxides as the active sites for the reaction with GSH, which we confirm using DFT calculations of reaction barriers and further identify a synergism between the adjacent epoxide and hydroxyl groups on the GO surface. The direct oxidation mechanism at specific oxygen sites offers insight into controlling GO chemical reactivity through surface chemistry manipulations. This insight is critical for furthering our understanding of GO oxidative stress pathways in cytotoxicity as well as for providing rational material design for GO applications that can leverage this reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c11539 | DOI Listing |
Trop Anim Health Prod
January 2025
College of Animal Sciences, Anhui Science and Technology University, Fengyang, 233100, China.
This study was aim to investigate the effects of lipoic acid (ALA) on performance, meat quality, serum biochemistry and antioxidant function of broilers under heat stress (HS). Two hundred1-day-old Cobb broilers were randomly divided into four treatment groups and each treatment consisted of 4 replicates of 10 broilers each. The treatment group adopts a 2 × 2 two-factor setting, which is divided into two diets (basic diet or 250 mg/kg ALA diet) and two temperatures (24 ± 1℃ or 33 ± 1℃).
View Article and Find Full Text PDFDalton Trans
January 2025
Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
The development of Pd-based materials with high activity and long-term stability is crucial for their practical applications as an anode catalyst in direct formic acid fuel cells. Herein, we reveal that the catalytic activity of Pd towards formic acid oxidation can be enhanced by incorporation of a series of rare-earth oxides, including ScO, CeO, LaO, and PrO. For example, Pd nanoparticles incorporated with ScO supported on nitrogen-doped reduced graphene oxide (Pd-ScO/N-rGO-, = 1/3, 1/2, 2/3, 1, and 3/2; "" denotes the molar ratio of Pd : Sc) can be obtained using a sodium borohydride reduction method.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430073, P.R. China.
Electrochemical oxidative cross-dehydrogenative-coupling (CDC) is an ideal strategy to conduct the C3-alkoxylation of imidazo[1,2-]pyridine, but it remains a challenge owing to limitation imposed by the use of alkyl alcohols and carboxylic acids. Herein, we report a mild and efficient 2-electrode constant-potential electrolysis of imidazo[1,2-]pyridine with hexafluoroisopropanol (HFIP) to produce various imidazo[1,2-]pyridine HFIP ethers. Mechanistic studies indicated that the electrooxidation reaction might involve radical coupling and ionic reaction.
View Article and Find Full Text PDFFront Nutr
January 2025
Aging and Metabolism Research Program, Oklahoma City, OK, United States.
Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that has demonstrated anti-cancer, anti-microbial and anti-oxidant properties. SFN ameliorates various disease models in rodents (e.g.
View Article and Find Full Text PDFACS Phys Chem Au
January 2025
University of Duisburg-Essen, Faculty of Chemistry, Theoretical Catalysis and Electrochemistry, Universitätsstraße 5, Essen 45141, Germany.
The direct conversion of dinitrogen to nitrate is a dream reaction to combine the Haber-Bosch and Ostwald processes as well as steam reforming using electrochemistry in a single process. Regrettably, the corresponding nitrogen oxidation (NOR) reaction is hampered by a selectivity problem, since the oxygen evolution reaction (OER) is both thermodynamically and kinetically favored in the same potential range. This opens the search for the identification of active and selective NOR catalysts to enable nitrate production under anodic reaction conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!