Significance: The responsible genetic variants for occult macular dystrophy (OMD) were found at the predicted intrinsically disordered region (IDR) of the gene.
Purpose: We examined the phenotypes and genotypes of family members from OMD. In addition, the genetic characteristics of the gene in OMD were investigated.
Methods: Whole-exome sequencing was applied on two affected family members, and Sanger sequencing was performed on three members. The structural property of RP1L1 and pathogenic variants was analyzed using predictor of natural disordered regions (PONDR).
Results: Two affected members showed moderate visual impairment and relative central scotoma. The spectral domain optical coherence tomography (SD-OCT) images showed an absence of the interdigitation zone (IZ) and ellipsoid zone (EZ) in one case, and an obscure EZ line in the other case. A variant (c.3593 C > T, p.Ser1198Phe) was identified in two affected members but not in the unaffected member. The PONDR analysis showed that the region from p.1189 to p.1248 could be predicted to be an IDR in the RP1L1 molecule. And the p. Ser1198Phe variant showed significant reduction of PONDR score.
Conclusions: Although, the major pathogenic variant of OMD is p.Arg45Trp, multiple reports indicate that the region between p.1194 and p.1201 is another hot spot of OMD. The PONDR analysis predicted that the RP1L1 molecule is one of the intrinsically disordered proteins. It is speculated that the region around p.1200 is essential for the normal function of the RP1L1 molecule, and the missense variants of that area cause the development of OMD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/13816810.2020.1821383 | DOI Listing |
Paxillin (PXN) and focal adhesion kinase (FAK) are two major components of the focal adhesion complex, a multiprotein structure linking the intracellular cytoskeleton to the cell exterior. PXN interacts directly with the C-terminal targeting domain of FAK (FAT) via its intrinsically disordered N-terminal domain. This interaction is necessary and sufficient for localizing FAK to focal adhesions.
View Article and Find Full Text PDFPulsed Dipolar ESR Spectroscopy (PDS) is a uniquely powerful technique to characterize the structural property of intrinsically disordered proteins (IDPs) and polymers and the conformational evolution of IDPs and polymers, e.g. during assembly, by offering the probability distribution of segment end-to-end distances.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
January 2025
Computational Structural Biology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Bioinformatics Centre, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India. Electronic address:
Conformational switching in RNA binding proteins (RBPs) are crucial for regulation of RNA processing and transport. Dysregulation or mutations in RBPs and broad RNA processing abnormalities are related to many human diseases including neurodegenerative disorders. Here, we review the role of protein-RNA conformational switches in RBP-RNA complexes.
View Article and Find Full Text PDFMol Cell
January 2025
Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA. Electronic address:
Pre-mRNA 3' processing is an integral step in mRNA biogenesis. However, where this process occurs in the nucleus remains unknown. Here, we demonstrate that nuclear speckles (NSs), membraneless organelles enriched with splicing factors, are major sites for pre-mRNA 3' processing in human cells.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA. Electronic address:
In vivo functions of the septin and actin cytoskeletons are closely intertwined, yet the mechanisms underlying septin-actin crosstalk have remained poorly understood. Here, we show that the yeast-bud-neck-associated Fes/CIP4 homology Bar-amphiphysin-Rvs (F-BAR) protein suppressor of yeast profilin 1 (Syp1)/FCHo uses its intrinsically disordered region (IDR) to directly bind and bundle filamentous actin (F-actin) and to physically link septins and F-actin. Interestingly, the only other F-BAR protein found at the neck during bud development, Hof1, has related activities and also potently inhibits the bud-neck-associated formin Bnr1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!