An epithelial-mesenchymal transition (EMT) occurs in almost every metazoan embryo at the time mesoderm begins to differentiate. Several embryos have a long record as models for studying an EMT given that a known population of cells enters the EMT at a known time thereby enabling a detailed study of the process. Often, however, it is difficult to learn the molecular details of these model EMT systems because the transitioning cells are a minority of the population of cells in the embryo and in most cases there is an inability to isolate that population. Here we provide a method that enables an examination of genes expressed before, during, and after the EMT with a focus on just the cells that undergo the transition. Single cell RNA-seq (scRNA-seq) has advanced as a technology making it feasible to study the trajectory of gene expression specifically in the cells of interest, in vivo, and without the background noise of other cell populations. The sea urchin skeletogenic cells constitute only 5% of the total number of cells in the embryo yet with scRNA-seq it is possible to study the genes expressed by these cells without background noise. This approach, though not perfect, adds a new tool for uncovering the mechanism of EMT in this cell type.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7949293PMC
http://dx.doi.org/10.1007/978-1-0716-0779-4_23DOI Listing

Publication Analysis

Top Keywords

single cell
8
cells
8
population cells
8
cells embryo
8
genes expressed
8
background noise
8
emt
6
methodologies emt
4
emt vivo
4
vivo single
4

Similar Publications

The Junín virus (JUNV) is one of the New World arenaviruses that cause severe hemorrhagic fever. Human transferrin receptor 1 (hTfR1) has been identified as the main receptor for JUNV for virus entry into host cells. To date, no treatment has been approved for JUNV.

View Article and Find Full Text PDF

Background: Understanding the interference patterns of respiratory viruses could be important for shedding light on potential strategies to combat these human infectious agents.

Objective: To investigate the possible interactions between adenovirus type 2 (AdV2), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A/H1N1 pandemic (H1N1pdm09) using the A549 cell line.

Methods: Single infections, co-infections, and superinfections (at 3 and 24 h after the first virus infection) were performed by varying the multiplicity of infection (MOI).

View Article and Find Full Text PDF

Full-length hepatitis B virus (HBV) transcripts of chimpanzees and patients treated with multidose (MD) HBV siRNA ARC-520 and entecavir (ETV) were characterized by single-molecule real-time (SMRT) sequencing, identifying multiple types of transcripts with the potential to encode HBx, HBsAg, HBeAg, core, and polymerase, as well as transcripts likely to be derived from dimers of dslDNA, and these differed between HBeAg-positive (HBeAg+) and HBeAg-negative (HBeAg-) individuals. HBV transcripts from the last follow-up ~30 months post-ARC-520 treatment were categorized from one HBeAg+ (one of two previously highly viremic patients that became HBeAg- upon treatment and had greatly reduced cccDNA products) and four HBeAg- patients. The previously HBeAg+ patient received a biopsy that revealed that he had 3.

View Article and Find Full Text PDF

Achieving the precise targeting of lentiviral vectors (LVs) to specific cell populations is crucial for effective gene therapy, particularly in cancer treatment where the modulation of the tumor microenvironment can enhance anti-tumor immunity. Programmed cell death protein 1 (PD-1) is overexpressed on activated tumor-infiltrating T lymphocytes, including regulatory T cells that suppress immune responses via FOXP3 expression. We developed PD1-targeted LVs by incorporating the anti-PD1 nanobody nb102c3 into receptor-blinded measles virus H and VSV-G glycoproteins.

View Article and Find Full Text PDF

Phenotypic Differences Between the Epidemic Strains of Vesicular Stomatitis Virus Serotype Indiana 98COE and IN0919WYB2 Using an In-Vivo Pig () Model.

Viruses

December 2024

National Bio- and Agro-Defense Facility, Agricultural Research Services, United States Department of Agriculture, Manhattan, KS 66506, USA.

During the past 25 years, vesicular stomatitis virus (VSV) has produced multiple outbreaks in the US, resulting in the emergence of different viral lineages. Currently, very little is known about the pathogenesis of many of these lineages, thus limiting our understanding of the potential biological factors favoring each lineage in these outbreaks. In this study, we aimed to determine the potential phenotypic differences between two VSV Indiana (VSIV) serotype epidemic strains using a pig model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!