This study measured the changes of microorganisms in the midgut and habitat niche of Rhynchophorus ferrugineus Olivier, an invasive quarantine pest, by Illumina sequencing. The bacterial diversity in the R. ferrugineus larvae midgut and their habitat niche was compared to the uninfected P. sylvestris. The Proteobacteria and Firmicutes occupied a dominant position in the R. ferrugineus midgut and infected P. sylvestris, while in the uninfected P. sylvestris the predominant bacterial phylum was the Cyanobacteria. Enterobacter, Dysgonomonas, and Entomoplasma were the dominant bacterial genera in R. ferrugineus midgut and also within the infected trees and uninfected trees with low relative abundance. These bacteria could be exploited as the biopesticide vector to control R. ferrugineus population. Besides, Sphingobacterium, Shinella, and Rhodobacter genera had the same distribution pattern in the infected and uninfected P. sylvestris, and these bacteria were not found in the midgut of R. ferrugineus. Interestingly, Paludibacter and Parabacteroides were only distributed in the wood fiber of the infected P. sylvestris, which could be used as potential microbial markers to detect if the palm plants are damaged by the R. ferrugineus. The results of this study will be beneficial to the development of control strategies for R. ferrugineus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-020-02196-9 | DOI Listing |
Parasitology
January 2025
Department of Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, UK.
Plant secondary metabolites (PSMs) may improve gastrointestinal health by exerting immunomodulatory, anti-inflammatory and/or antiparasitic effects. Bark extracts from coniferous tree species have previously been shown to reduce the burden of a range of parasite species in the gastrointestinal tract, with condensed tannins as the potential active compounds. In the present study, the impact of an acetone extract of pine bark () on the resistance, performance and tolerance of genetically diverse mice () was assessed.
View Article and Find Full Text PDFCurr Microbiol
November 2020
College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.
This study measured the changes of microorganisms in the midgut and habitat niche of Rhynchophorus ferrugineus Olivier, an invasive quarantine pest, by Illumina sequencing. The bacterial diversity in the R. ferrugineus larvae midgut and their habitat niche was compared to the uninfected P.
View Article and Find Full Text PDFPLoS One
September 2020
Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Košice, Slovak Republic.
The abomasal parasitic nematode Haemonchus contortus can influence the abomasal microbiome of the host. On the other hand, no information occurs on the influence of the parasite on the hindgut microbiome of the host. We evaluated the impact of Haemonchus contortus on the fecal microbial community of the experimentally infected lambs treated with a mixture of medicinal herbs to ameliorate the haemonchosis.
View Article and Find Full Text PDFTree Physiol
June 2008
Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, Uppsala, Sweden.
To investigate functional differences in the recognition and response mechanisms of conifer roots to fungi with different trophic strategies, Pinus sylvestris L. was challenged with a saprotrophic fungus Trichoderma aureoviride Rifai. The results were compared with separate studies investigating pine interactions with a pathogen, Heterobasidion annosum (Fr.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!