Sentinel-2 scenes are increasingly being used in operational Earth observation (EO) applications at regional, continental and global scales, in near-real time applications, and with multi-temporal approaches. On a broader scale, they are therefore one of the most important facilitators of the Digital Earth. However, the data quality and availability are not spatially and temporally homogeneous due to effects related to cloudiness, the position on the Earth or the acquisition plan. The spatio-temporal inhomogeneity of the underlying data may therefore affect any big remote sensing analysis and is important to consider. This study presents an assessment of the metadata for all accessible Sentinel-2 Level-1C scenes acquired in 2017, enabling the spatio-temporal coverage and availability to be quantified, including scene availability and cloudiness. Spatial exploratory analysis of the global, multi-temporal metadata also reveals that higher acquisition frequencies do not necessarily yield more cloud-free scenes and exposes metadata quality issues, e.g. systematically incorrect cloud cover estimation in high, non-vegetated altitudes. The continuously updated datasets and analysis results are accessible as a Web application called EO-Compass. It contributes to a better understanding and selection of Sentinel-2 scenes, and improves the planning and interpretation of remote sensing analyses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455071PMC
http://dx.doi.org/10.1080/17538947.2019.1572799DOI Listing

Publication Analysis

Top Keywords

operational earth
8
earth observation
8
observation applications
8
sentinel-2 scenes
8
remote sensing
8
assessing global
4
sentinel-2
4
global sentinel-2
4
sentinel-2 coverage
4
coverage dynamics
4

Similar Publications

The Darwin Tree of Life (DToL) project aims to generate high-quality reference genomes for all eukaryotic organisms in Britain and Ireland. At the time of writing, PacBio HiFi reads are generated for all samples using the Sequel IIe systems by the Wellcome Sanger Institute's Scientific Operations teams, however we expect lessons from this work to apply directly to the Revio system too, as core principles of SMRT sequencing remain the same. We observed that HiFi yield is highly variable for DToL samples.

View Article and Find Full Text PDF

Avoiding severe structural distortion, irreversible phase transition, and realizing the stabilized multielectron redox are vital for promoting the development of high-performance NASICON-type cathode materials for sodium-ion batteries (SIBs). Herein, a high-entropy NaVFeTiMnCr(PO) (HE-NaTMP) cathode material is prepared by ultrafast high-temperature shock, which inhibits the possibility of phase separation and achieves reversible and stable multielectron transfer of 2.4/2.

View Article and Find Full Text PDF

As Water Sensitive Urban Design (WSUD) is a key strategy in integrated urban water management worldwide, there is a need for robust monitoring of WSUD systems. Being economical and flexible for operation and communication, low-cost sensor systems show great potential to mainstream digital water management. Yet, such systems are insufficiently tested, casting doubt on the reliability of their measurements.

View Article and Find Full Text PDF

RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE (RUBISCO) is the most abundant enzyme and CO2 bio-sequestration system on Earth. Its in vivo activity is usually determined by 14CO2 incorporation into 3-phosphoglycerate (3PGA). However, the radiometric analysis of 3PGA does not distinguish carbon positions.

View Article and Find Full Text PDF

The lower limb of Homo naledi presents a suite of primitive, derived and unique morphological features that pose interesting questions about the nature of bipedal movement in this species. The exceptional representation of all skeletal elements in H. naledi makes it an excellent candidate for biomechanical analysis of gait dynamics using modern kinematic software.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!