Immune responses induced by a combined vaccination with a recombinant chimera of Mycoplasma hyopneumoniae antigens and capsid virus-like particles of porcine circovirus type 2.

BMC Vet Res

Department of Biochemistry and Molecular Biology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, 310018, China.

Published: September 2020

AI Article Synopsis

  • Mycoplasma hyopneumoniae (Mhp) and porcine circovirus type 2 (PCV2) are significant pathogens leading to severe diseases in pigs that result in substantial economic losses in the swine industry.
  • Current vaccination strategies mainly target these pathogens, but there are limited combination vaccines available.
  • A new combination vaccine using virus-like particles and specific antigens showed strong immune responses in mice and piglets, suggesting it could be an effective strategy for protecting pigs against these diseases.

Article Abstract

Background: Mycoplasma hyopneumoniae (Mhp) and porcine circovirus type 2 (PCV2) are two important pathogens causing Mycoplasma pneumonia of swine (MPS) and porcine circovirus diseases and porcine circovirus-associated diseases (PCVDs/PCVADs), respectively, and resulted in considerable economic loss to the swine industry worldwide. Currently, vaccination is one of the main measures to control these two diseases; however, there are few combination vaccines that can prevent these two diseases. To determine the effect of combination immunization, we developed capsid-derived (Cap) virus-like particles (VLPs) of PCV2 and a new recombinant chimera composed of the P97R1, P46, and P42 antigens of Mhp. Then we investigated the immune responses induced by the immunization with this combination vaccine in mice and piglets.

Results: The high level antibodies against three protein antigens (P97R1, P46, and P42 of Mhp) were produced after immunization, up to or higher than 1:400,000; the antibody levels in Pro group continuously increased throughout the 42 days for all the antigens tested. The lymphocyte proliferative response in PCV2 group was stronger than that in PBS, VP, Mhp CV in mice. The antibody levels for Cap remained stable and reached the peak at 35 DAI. The IFN-γ and IL-4 in sera were significantly enhanced in the Pro group than that in the negative control-VP group on Day 14 and 28 post-the first immunization in piglets.

Conclusions: Above all, the combination immunization could induce humoral and cellular immune responses against all four antigens in mice and piglets. Therefore, our approach is a simple and effective vaccination strategy to protect pigs against MPS and PCVD/PCVAD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7493066PMC
http://dx.doi.org/10.1186/s12917-020-02560-8DOI Listing

Publication Analysis

Top Keywords

immune responses
12
porcine circovirus
12
responses induced
8
recombinant chimera
8
mycoplasma hyopneumoniae
8
virus-like particles
8
circovirus type
8
combination immunization
8
p97r1 p46
8
p46 p42
8

Similar Publications

Learning the language of antibody hypervariability.

Proc Natl Acad Sci U S A

January 2025

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.

Protein language models (PLMs) have demonstrated impressive success in modeling proteins. However, general-purpose "foundational" PLMs have limited performance in modeling antibodies due to the latter's hypervariable regions, which do not conform to the evolutionary conservation principles that such models rely on. In this study, we propose a transfer learning framework called Antibody Mutagenesis-Augmented Processing (AbMAP), which fine-tunes foundational models for antibody-sequence inputs by supervising on antibody structure and binding specificity examples.

View Article and Find Full Text PDF

Deletion of metal transporter Zip14 reduces major histocompatibility complex II expression in murine small intestinal epithelial cells.

Proc Natl Acad Sci U S A

January 2025

Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.

Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.

View Article and Find Full Text PDF

PsDMAP1/PsTIP60-regulated H4K16ac is required for ROS-dependent virulence adaptation of on host plants.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.

View Article and Find Full Text PDF

Palmitoylation-dependent association with Annexin II directs hepatitis E virus ORF3 sorting into vesicles and quasi-enveloped virions.

Proc Natl Acad Sci U S A

January 2025

Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.

Historically considered to be nonenveloped, hepatitis E virus (HEV), an important zoonotic pathogen, has recently been discovered to egress from infected cells as quasi-enveloped virions. These quasi-enveloped virions circulating in the blood are resistant to neutralizing antibodies, thereby facilitating the stealthy spread of infection. Despite abundant evidence of the essential role of the HEV-encoded ORF3 protein in quasi-enveloped virus formation, the underlying mechanism remains unclear.

View Article and Find Full Text PDF

Background: The antigen Na-GST-1, expressed by the hookworm Necator americanus, plays crucial biochemical roles in parasite survival. This study explores the development of mRNA vaccine candidates based on Na-GST-1, building on the success of recombinant Na-GST-1 (rNa-GST-1) protein, currently assessed as a subunit vaccine candidate, which has shown promise in preclinical and clinical studies.

Methodology/findings: By leveraging the flexible design of RNA vaccines and protein intracellular trafficking signal sequences, we developed three variants of Na-GST-1 as native (cytosolic), secretory, and plasma membrane-anchored (PM) antigens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!