Background: Extremity liposarcoma represents 25% of extremity soft tissue sarcoma and has a better prognosis than liposarcoma occurring in other anatomic sites. The purpose of this study was to develop two nomograms for predicting the overall survival (OS) and cancer-specific survival (CSS) of patients with extremity liposarcoma.
Methods: A total of 2170 patients diagnosed with primary extremity liposarcoma between 2004 and 2015 were extracted from the Surveillance, Epidemiology, and End Results (SEER) database. Univariate and multivariate Cox analyses were performed to explore the independent prognostic factors and establish two nomograms. The area under the curve (AUC), C-index, calibration curve, decision curve analysis (DCA), Kaplan-Meier analysis, and subgroup analyses were used to evaluate the nomograms.
Results: Six variables were identified as independent prognostic factors for both OS and CSS. In the training cohort, the AUCs of the OS nomogram were 0.842, 0.841, and 0.823 for predicting 3-, 5-, and 8-year OS, respectively, while the AUCs of the CSS nomogram were 0.889, 0.884, and 0.859 for predicting 3-, 5-, and 8-year CSS, respectively. Calibration plots and DCA revealed that the nomogram had a satisfactory ability to predict OS and CSS. The above results were also observed in the validation cohort. In addition, the C-indices of both nomograms were significantly higher than those of all independent prognostic factors in both the training and validation cohorts. Stratification of the patients into high- and low-risk groups highlighted the differences in prognosis between the two groups in the training and validation cohorts.
Conclusion: Age, sex, tumor size, grade, M stage, and surgery status were confirmed as independent prognostic variables for both OS and CSS in extremity liposarcoma patients. Two nomograms based on the above variables were established to provide more accurate individual survival predictions for extremity liposarcoma patients and to help physicians make appropriate clinical decisions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7493333 | PMC |
http://dx.doi.org/10.1186/s12885-020-07396-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!