Objective: Although several different types of bioreactors are currently available with mechanical stimulation of constructs or prostheses for tendon regeneration, they are in many cases expensive and difficult to operate. This paper proposes a simple bioreactor to mechanically stimulate up to three constructs for tendon and ligament repair, composed of a stainless-steel frame and an electric motor.

Methods: The deformation is produced by a cam wheel, whose eccentricity defines the maximum deformation. The test samples, braids of PLA seeded in surface with mouse fibroblasts, are immersed in the culture medium during mechanical stimulation.

Results: Its advantages over existing similar bioreactor designs include: easy renewal of the culture medium and an external electric motor to avoid heating and contamination issues. After 14 days of stretching, the culture samples showed enhanced cellular proliferation and cell fiber alignment in addition to higher production of type I collagen. The cells initially seeded on the braid surface migrated to the inside of the braid.

Conclusion: Although the results obtained have a poor statistical basis, they do suggest that the bioreactor could be usefully applied to stimulate constructs for tendon and ligament repair. Anyway, further experiments should be conducted in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1080/17434440.2020.1825072DOI Listing

Publication Analysis

Top Keywords

mechanical stimulation
8
constructs tendon
8
tendon ligament
8
ligament repair
8
culture medium
8
bioreactor
4
bioreactor mechanical
4
stimulation cultured
4
cultured tendon-like
4
constructs
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!