The first example of a copper(ii) oxide screen printed electrode is reported which is characterised with microscopy and explored towards the electrochemical sensing of glucose, maltose, sucrose and fructose. It is shown that the non-enzymatic electrochemical sensing of glucose with cyclic voltammetry and amperometry is possible with low micro-molar up to milli-molar glucose readily detectable which compares competitively with nano-catalyst modified electrodes. The sensing of glucose shows a modest selectivity over maltose and sucrose while fructose is not detectable. An additional benefit of this approach is that metal oxides with known oxidation states can be incorporated into the screen printed electrodes allowing one to identify exactly the origin of the observed electro-catalytic response which is difficult when utilising metal oxide modified electrodes formed via electro-deposition techniques which result in a mixture of metal oxides/oxidation states. These next generation screen printed electrochemical sensing platforms provide a simplification over previous copper oxide systems offering a novel fabrication route for the mass production of electro-catalytic sensors for analytical and forensic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b9ay00095j | DOI Listing |
Int Endod J
January 2025
Department of Oral and Maxillofacial Surgery, Guangdong Engineering Research Center of Oral Restoration and Reconstruction Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.
Aim: Autotransplantation of teeth (ATT) is a viable biological method for addressing dental defects. The objective was to achieve occlusal reconstruction-orientated ATT to enhance functionality and obtain optimal location and adjacency. This study proposes a new concept of a guide (a fully guided system) to achieve position-predictable ATT.
View Article and Find Full Text PDFCochrane Database Syst Rev
January 2025
Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK.
Background: People from lower socioeconomic groups are more likely to smoke and less likely to succeed in achieving abstinence, making tobacco smoking a leading driver of health inequalities. Contextual factors affecting subpopulations may moderate the efficacy of individual-level smoking cessation interventions. It is not known whether any intervention performs differently across socioeconomically-diverse populations and contexts.
View Article and Find Full Text PDFExtreme Mech Lett
March 2025
Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
Cutting soft materials on the microscale has emerging applications in single-cell studies, tissue microdissection for organoid culture, drug screens, and other analyses. However, the cutting process is complex and remains incompletely understood. Furthermore, precise control over blade geometries, such as the blade tip radius, has been difficult to achieve.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Neurological Surgery, The Ohio State University, Columbus, OH, United States.
Background: Diabetic peripheral neuropathy (DPN) is a common complication of diabetes. Proactive treatment options remain limited, which is exacerbated by a lack of sensitive and convenient diagnostics, especially early in disease progression or specifically to assess small fiber neuropathy (SFN), the loss of distal small diameter axons that innervate tissues and organs.
Methods: We designed, fabricated, tested, and validated a first-of-its-kind medical diagnostic device for the functional assessment of transdermal small fiber nerve activity.
Extracell Vesicle
December 2024
Department of Chemical Engineering, University of Puerto Rico-Mayaguez, Route 108, Mayaguez, Puerto Rico, USA.
Matrix-bound vesicles (MBVs), an integral part of the extracellular matrix (ECM), are emerging as pivotal factors in ECM-driven molecular signaling. This study is the first to report the isolation of MBVs from porcine arterial endothelial cell basement membranes (A-MBVs) and thyroid cartilage (C-MBVs), the latter serving as a negative control due to its minimal vascular characteristics. Using Transmission Electron Microscopy (TEM), Nano-Tracking Analysis (NTA), Electrochemical Impedance Spectroscopy (EIS), and Atomic Force Microscopy (AFM), we orthogonally characterized the isolated MBVs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!