The Cytokinesis-Block Micronucleus Assay on Human Isolated Fresh and Cryopreserved Peripheral Blood Mononuclear Cells.

J Pers Med

Radiobiology, Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, 9000 Gent, Belgium.

Published: September 2020

The cytokinesis-block micronucleus (CBMN) assay is a standardized method used for genotoxicity studies. Conventional whole blood cultures (WBC) are often used for this assay, although the assay can also be performed on isolated peripheral blood mononuclear cell (PBMC) cultures. However, the standardization of a protocol for the PBMC CBMN assay has not been investigated extensively. The aim of this study was to optimize a reliable CBMN assay protocol for fresh and cryopreserved peripheral blood mononuclear cells (PBMCS), and to compare micronuclei (MNi) results between WBC and PBMC cultures. The G CBMN assay was performed on whole blood, freshly isolated, and cryopreserved PBMCS from healthy human blood samples and five radiosensitive patient samples. Cells were exposed to 220 kV X-ray in vitro doses ranging from 0.5 to 2 Gy. The optimized PBMC CBMN assay showed adequate repeatability and small inter-individual variability. MNi values were significantly higher for WBC than for fresh PBMCS. Additionally, cryopreservation of PBMCS resulted in a significant increase of MNi values, while different cryopreservation times had no significant impact. In conclusion, our standardized CBMN assay on fresh and cryopreserved PBMCS can be used for genotoxicity studies, biological dosimetry, and radiosensitivity assessment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564880PMC
http://dx.doi.org/10.3390/jpm10030125DOI Listing

Publication Analysis

Top Keywords

cbmn assay
24
fresh cryopreserved
12
peripheral blood
12
blood mononuclear
12
assay
9
cytokinesis-block micronucleus
8
cryopreserved peripheral
8
mononuclear cells
8
genotoxicity studies
8
assay performed
8

Similar Publications

Background: Radon, a colorless and odorless radioactive gas, poses serious health risks. It is the second leading cause of lung cancer and notably increases lung cancer risk in smokers. Although previous epidemiological studies have mainly examined lung cancer rates in miners, the effects of radon on genomic stability and its molecular mechanisms are not well understood.

View Article and Find Full Text PDF

The increasing use of products for medicinal, dietary, and recreational purposes has raised concerns about mycotoxin contamination in cannabis and hemp. Mycotoxins persist in these products' post-processing, posing health risks via multiple exposure routes. This study investigated cytotoxic and genotoxic interactions between cannabidiol (CBD) and the mycotoxin citrinin (CIT) using human cell models: SH-SY5Y, HepG2, HEK293, and peripheral blood lymphocytes.

View Article and Find Full Text PDF

Combining helical foldamers with α-peptides can produce α-helix mimetics with a reduced peptide character and enhanced resistance to proteolysis. Previously, we engineered a hybrid peptide-oligourea sequence replicating the N-terminal α-helical domain of p53 to achieve high affinity binding to hDM2. Here, we further advance this strategy by combining the foldamer approach with side chain cross-linking to create more constrained cell-permeable inhibitors capable of effectively engaging the target within cells.

View Article and Find Full Text PDF

The dispersion method does not affect the in vitro genotoxicity of multi-walled carbon nanotubes despite inducing surface alterations.

NanoImpact

December 2024

In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK. Electronic address:

Multi-walled carbon nanotubes (MWCNTs) are a desirable class of high aspect ratio nanomaterials (HARNs) owing to their extensive applications. Given their demand, the growing occupational and consumer exposure to these materials has warranted an extensive investigation into potential hazards they may pose towards human health. This study utilised both the in vitro mammalian cell gene mutation and the cytokinesis-blocked micronucleus (CBMN) assays to investigate genotoxicity in human lymphoblastoid (TK6) and 16HBE14o human lung epithelial cells, following exposure to NM-400 and NM-401 MWCNTs for 24 h.

View Article and Find Full Text PDF

The measurement of micronucleus (MN) in the cytokinesis-block arrested binucleated cells has been extensively used as a biomarker in many radiation biology applications in specific biodosimetry. Following radiation casualties, medical management of exposed individuals begins with triage and biological dosimetry. The cytokinesis blocked micronucleus (CBMN) assay is the alternate for the gold standard dicentric chromosome assay in radiation dose assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!