Senescence is a process related to the stopping of divisions and changes leading the cell to the SASP phenotype. Permanent senescence of many SASP cells contributes to faster aging of the body and development of age-related diseases due to the release of pro-inflammatory factors. Both mitotically active and non-dividing cells can undergo senescence as a result of activation of different molecular pathways. Telomeres, referred to as the molecular clock, direct the dividing cell into the aging pathway when reaching a critical length. In turn, the senescence of postmitotic cells depends not on the length of telomeres, but their functionality. Dysfunctional telomeres are responsible for triggering the signaling of DNA damage response (DDR). Telomerase subunits in post-mitotic cells translocate between the nucleus, cytoplasm and mitochondria, participating in the regulation of their activity. Among other things, they contribute to the reduction of reactive oxygen species generation, which leads to telomere dysfunction and, consequently, senescence. Some proteins of the shelterin complex also play a protective role by inhibiting senescence-initiating kinases and limiting ROS production by mitochondria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dnarep.2020.102956 | DOI Listing |
Antioxidants (Basel)
January 2025
Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
Glucosinolates (GSLs) are nitrogen/sulfur-containing glycosides widely present in the order of Brassicales, particularly in the Brassicaceae family. Camelina ( (L.) Crantz) is an oilseed plant belonging to this family.
View Article and Find Full Text PDFPLoS Biol
January 2025
Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America.
Throughout the animal kingdom, several members of the basic helix-loop-helix (bHLH) family act as proneural genes during early steps of nervous system development. Roles of bHLH genes in specifying terminal differentiation of postmitotic neurons have been less extensively studied. We analyze here the function of 5 Caenorhabditis elegans bHLH genes, falling into 3 phylogenetically conserved subfamilies, which are continuously expressed in a very small number of postmitotic neurons in the central nervous system.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2025
Department of Biophysics, Yeditepe University School of Medicine, Yeditepe University, Istanbul, 34755, Turkey.
Chronological lifespan (CLS) in budding yeast Saccharomyces cerevisiae, which is defined as the time nondividing cells in saturation remain viable, has been utilized as a model to study post-mitotic aging in mammalian cells. CLS is closely related to entry into and maintenance of a quiescent state. Many rearrangements that direct the quiescent state enhance the ability of cells to endure several types of stress.
View Article and Find Full Text PDFJ Inherit Metab Dis
January 2025
Department of Paediatric Neurology, Neuromuscular Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK.
Macroautophagy is a highly conserved cellular pathway for the degradation and recycling of defective cargo including proteins, organelles, and macromolecular complexes. As autophagy is particularly relevant for cellular homeostasis in post-mitotic tissues, congenital disorders of autophagy, due to monogenic defects in key autophagy genes, share a common "clinical signature" including neurodevelopmental, neurodegenerative, and neuromuscular features, as well as variable abnormalities of the eyes, skin, heart, bones, immune cells, and other organ systems, depending on the expression pattern and the specific function of the defective proteins. Since the clinical and genetic resolution of EPG5-related Vici syndrome, the paradigmatic congenital disorder of autophagy, the widespread use of massively parallel sequencing has resulted in the identification of a growing number of autophagy-associated disease genes, encoding members of the core autophagy machinery as well as related proteins.
View Article and Find Full Text PDFTrends Neurosci
December 2024
Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Salisbury VA Medical Center, Salisbury, NC, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!