Background And Aims: Familial hypercholesterolemia is most frequently caused by genetic variants in the LDLR gene. Most of LDLR pathogenic variants are missense, followed by splicing and deletion/insertions variants. Mosaicism is a genetic condition in which an individual shows more than one clone of cells with different genotypes. The objective of this article was the molecular characterization of a patient with hypercholesterolemia.

Methods And Results: Genetic analysis of DNA from peripheral blood and saliva was performed by NGS, Sanger sequencing and pyrosequencing technologies. NGS analysis detected the pathogenic variant LDLR:c.1951G > T:p.(Asp651Tyr) in 9%-12% of reads. The presence of the variant was confirmed by pyrosequencing analysis. The variant found was functional characterized using an in vitro model (CHO-ldlA7 cells). Activity and expression of cell surface LDLR were measured by flow cytometry. Colocalization LDLR-Dil-LDL was detected by immunofluorescence. The LDLR activity showed 80% uptake, 50% binding and 53% expression of cell surface LDLR regarding wild type.

Conclusions: Herein, we report the first case of a mosaic single nucleotide variant affecting the LDLR gene in a patient with familial hypercholesterolemia. As it has been described for other pathologies, mosaicism could be underestimated in FH and its detection will improve with the introduction of NGS technologies in the diagnostic routine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.atherosclerosis.2020.08.002DOI Listing

Publication Analysis

Top Keywords

familial hypercholesterolemia
12
ldlr gene
8
expression cell
8
cell surface
8
surface ldlr
8
ldlr
7
variant
5
hypercholesterolemia single-nucleotide
4
single-nucleotide variant
4
variant snv
4

Similar Publications

Exploring emerging pharmacotherapies for type 2 diabetes patients with hypertriglyceridemia.

Expert Opin Pharmacother

January 2025

Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan.

Introduction: Atherogenic dyslipidaemia with increased triglycerides, low high-density lipoprotein cholesterol levels and increased small dense low-density lipoprotein (LDL) particles is a major risk factor contributing to the increased cardiovascular (CV) risk in patients with type 2 diabetes (T2D). This is regarded as a residual risk after achieving target levels of LDL cholesterol.

Areas Covered: This article reviews the novel therapies to reduce triglycerides in patients with T2D.

View Article and Find Full Text PDF

Integrative analysis of miRNAs and proteins in plasma extracellular vesicles of patients with familial hypercholesterolemia.

Clin Chim Acta

January 2025

Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000 Brazil. Electronic address:

Background And Aims: Familial Hypercholesterolemia (FH) is a monogenic disease that leads to early-onset atherosclerosis. Causative mutations in FH-related genes are found in 60-80 % of patients, while epigenetic factors may contribute to mutation-negative cases. This study analyzed miRNAs and proteins from plasma-derived extracellular vesicles (EVs) of FH patients to explore their contribution in FH diagnosis.

View Article and Find Full Text PDF

Familial hypercholesterolemia (FH) is a genetic disease, usually with onset during childhood, characterized by elevated blood LDL cholesterol levels and potentially associated with severe cardiovascular complications. Concerning mutated genes in FH, such as , a small subset of FH patients presents a homozygous genotype, resulting in homozygous FH (HoFH) disease with a generally aggressive phenotype. Besides statins, ezetimibe and PCSK9 inhibitors, lomitapide (an anti-ApoB therapy) was also approved in 2012-2013 as an adjunctive treatment for HoFH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!