The falsification of data related to c-kit+ cardiac progenitor cells (CPCs) by a Harvard laboratory has been a veritable tragedy. Does this fraud mean that CPCs are not beneficial in models of ischemic cardiomyopathy? At least 50 studies from 26 laboratories independent of the Harvard group have reported beneficial effects of CPCs in mice, rats, pigs, and cats. The mechanism of action remains unclear. Our group has shown that CPCs do not engraft in the diseased heart, do not differentiate into new cardiac myocytes, do not regenerate dead myocardium, and thus work via paracrine mechanisms. A casualty of the misconduct at Harvard has been the SCIPIO trial, a collaboration between the Harvard group and the group in Louisville. The retraction of the SCIPIO paper was caused exclusively by issues with data generated at Harvard, not those generated in Louisville. In the retraction notice, the editors stated: "Although we do not have any reservations about the clinical work in Louisville that used the preparations from Anversa's laboratory in good faith, the lack of reliability regarding the laboratory work at Harvard means that we are now retracting this paper". We must be careful not to dismiss all work on CPCs because of one laboratory's misconduct. An unbiased review of the literature supports the therapeutic potential of CPCs for heart failure at the preclinical level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8299902 | PMC |
http://dx.doi.org/10.1139/cjpp-2020-0406 | DOI Listing |
Mol Biol Rep
January 2025
Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.
Cell communication and competition pathways are malleable to Myocardial Infarction (MI). Key signals, transcriptive regulators, and metabolites associated with apoptotic responses such as Myc, mTOR, and p53 are important players in the myocardium. The individual state of cardiomyocytes, fibroblasts, and macrophages in the heart tissue are adaptable in times of stress.
View Article and Find Full Text PDFDevelopment
November 2024
Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
Hematopoietic stem cells (HSCs) sustain life-long hematopoiesis and emerge during mid-gestation from hemogenic endothelial progenitors via an endothelial-to-hematopoietic transition (EHT). The full scope of molecular mechanisms governing this process remains unclear. The NR4A subfamily of orphan nuclear receptors act as tumor suppressors in myeloid leukemogenesis and have never been implicated in HSC specification.
View Article and Find Full Text PDFStem Cell Res Ther
November 2024
Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA.
Cells Tissues Organs
November 2024
Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
Introduction: Maternal obesity has been positively correlated with an increased cardiometabolic risk in the offspring throughout life, implying intergenerational transmission. However, little is known about the early-life cardiac cell modifications that imply the onset of heart diseases later in life. This study analyzed cardiac progenitor cells and cardiomyocyte differentiation on day of birth in the offspring born to obese dams.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
Notch signaling, an important signaling pathway in cardiac development, has been shown to mediate the reparative functions of c-kit+ progenitor cells (CPCs). However, it is unclear how each of the four canonical Notch-activating ligands affects intracellular processes in c-kit+ cells when used as an external stimulus. Neonatal c-kit+ CPCs were stimulated using four different chimeric Notch-activating ligands tethered to Dynabeads, and the resulting changes were assessed using TaqMan gene expression arrays, with subsequent analysis by principal component analysis (PCA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!