Advances in Functional Polymer Nanofibers: From Spinning Fabrication Techniques to Recent Biomedical Applications.

ACS Appl Mater Interfaces

Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil.

Published: October 2020

Functional polymeric micro-/nanofibers have emerged as promising materials for the construction of structures potentially useful in biomedical fields. Among all kinds of technologies to produce polymer fibers, spinning methods have gained considerable attention. Herein, we provide a recent review on advances in the design of micro- and nanofibrous platforms via spinning techniques for biomedical applications. Specifically, we emphasize electrospinning, solution blow spinning, centrifugal spinning, and microfluidic spinning approaches. We first introduce the fundamentals of these spinning methods and then highlight the potential biomedical applications of such micro- and nanostructured fibers for drug delivery, tissue engineering, regenerative medicine, disease modeling, and sensing/biosensing. Finally, we outline the current challenges and future perspectives of spinning techniques for the practical applications of polymer fibers in the biomedical field.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c12410DOI Listing

Publication Analysis

Top Keywords

biomedical applications
12
spinning
8
techniques biomedical
8
polymer fibers
8
spinning methods
8
spinning techniques
8
biomedical
5
advances functional
4
functional polymer
4
polymer nanofibers
4

Similar Publications

The Congressionally Directed Medical Research Programs (CDMRP) originated in 1992 via a Congressional appropriation to foster novel approaches to biomedical research in response to the expressed needs of its stakeholders-the American public, the military, and Congress. Currently there are 35 CDMRP programs each addressing a specific disease or condition. The Peer Reviewed Alzheimer's Research Program (PRARP) began in 2011 and has a vision to mitigate the impact of Alzheimer's and related dementias associated with military and diverse risks.

View Article and Find Full Text PDF

Biomimetic peptide conjugates as emerging strategies for controlled release from protein-based materials.

Drug Deliv

December 2025

Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE) Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.

Biopolymers, such as collagens, elastin, silk fibroin, spider silk, fibrin, keratin, and resilin have gained significant interest for their potential biomedical applications due to their biocompatibility, biodegradability, and mechanical properties. This review focuses on the design and integration of biomimetic peptides into these biopolymer platforms to control the release of bioactive molecules, thereby enhancing their functionality for drug delivery, tissue engineering, and regenerative medicine. Elastin-like polypeptides (ELPs) and silk fibroin repeats, for example, demonstrate how engineered peptides can mimic natural protein domains to modulate material properties and drug release profiles.

View Article and Find Full Text PDF

The 5,000 to 8,000 monogenic diseases are inherited disorders leading to mutations in a single gene. These diseases usually appear in childhood and sometimes lead to morbidity or premature death. Although treatments for such diseases exist, gene therapy is considered an effective and targeted method and has been used in clinics for monogenic diseases since 1989.

View Article and Find Full Text PDF

Pharmaceutical giants (e.g., Ashland, Bausch & Lomb, Johnson & Johnson, Medtronic, Neurelis, etc.

View Article and Find Full Text PDF

Indole, a ubiquitous structural motif in bioactive compounds, has played a pivotal role in drug discovery. Among indole derivatives, indole-3-carboxaldehyde (I3A) has emerged as a particularly promising scaffold for the development of therapeutic agents. This review delves into the recent advancements in the chemical modification of I3A and its derivatives, highlighting their potential applications in various therapeutic areas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!