Guanine self-assemblies are promising supramolecular platforms for optoelectronic applications. The study (Hua , , , 14,682-14,689) reported that alkaline cations cannot modulate the electronic absorption spectrum of G-quadruplexes, although a cation effect is observable during electronic relaxation due to different mobility of Na and K cations. In this work, we theoretically examined whether divalent Mg and Ca cations and hydration might shift excited charge-transfer states of a cation-templated stacked G-quartet to the absorption red tail. Our results showed that earth alkaline cations blue-shifted nπ* states and stabilized charge-transfer ππ* states relative to those of complexes with alkaline cations, although the number of charge-separation states was not significantly modified. Earth alkaline cations were not able to considerably increase the amount of charge-transfer states below the L excitonic states. Hydration shifted charge-transfer states of the Na-coordinated G-octet to the absorption red tail, although this part of the spectrum was still dominated by monomer-like excitations. We found G-octet electron detachment states at low excitation energies in aqueous solution. These states were distributed over a broad range of excitation energies and could be responsible for oxidative damage observed upon UV irradiation of biological G-quadruplexes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.0c05022DOI Listing

Publication Analysis

Top Keywords

alkaline cations
20
charge-transfer states
16
earth alkaline
12
states
10
excited charge-transfer
8
cations hydration
8
absorption red
8
red tail
8
excitation energies
8
cations
7

Similar Publications

Design of RuO Electrocatalysts Containing Metallic Ru on the Surface to Accelerate the Alkaline Hydrogen Evolution Reaction.

ACS Appl Mater Interfaces

January 2025

Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.

The development of water splitting technology in alkaline medium requires the exploration of electrocatalysts superior to Pt/C to boost the alkaline hydrogen evolution reaction (HER). Ruthenium oxides with strong water dissociation ability are promising candidates; however, the lack of hydrogen combination sites immensely limits their performance. Herein, we reported a unique RuO catalyst with metallic Ru on its surface through a simple cation exchange method.

View Article and Find Full Text PDF

The diaspore-type crystalline structure is historically well-known in mineralogy, but it has also been widely studied for various applications in the field of catalysis, electrocatalysis, and batteries. However, once two anions of similar ionic size but different electronegativity, such as F and O or more precisely OH, are combined, the knowledge of the location of these two anions is of paramount importance to understand the chemical properties in relation with the generation of hydrogen bonds. Coprecipitation and hydrothermal routes were used to prepare hydroxide-fluorides that crystallize all in an orthorhombic structure with four formula units per cell.

View Article and Find Full Text PDF

Enhanced oxygen evolution reaction through improved lattice oxygen activity via carbon dots incorporation into MOFs.

J Colloid Interface Sci

January 2025

School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China. Electronic address:

Emerging of the lattice oxygen mechanism (LOM) provides a new opportunity for enhancing oxygen evolution reaction (OER) activity. However, its stability suffers from metal cation dissolution and lattice oxygen anionic redox chemistry. In this paper, carbon dots (CDs)-modified nickel-iron MOF (Metal-Organic Framework) nanosheets (NiFe-BDC/CDs) were prepared for efficient OER electrocatalysis.

View Article and Find Full Text PDF

High-consistency modification of cellulose fibers: Resource-efficient introduction of cationic charges, and their effect on fiber and nanofibril properties.

Carbohydr Polym

March 2025

Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden. Electronic address:

Quaternized cellulose fibers and cellulose nanofibrils (CNFs) are attractive candidates for the development of new renewable and biodegradable materials. However, the etherification reaction, through which functionalization is commonly achieved, provides low efficiencies, limiting industrial interest in the modification. This work primarily aims to increase the efficiency for the quaternization of cellulosic fibers while keeping the fiber-structure intact.

View Article and Find Full Text PDF

Four aliphatic amino acids-α-aminobutyric acid (AABA), β-aminobutyric acid (BABA), α-aminoisobutyric acid (AAIBA) and β-aminoisobutyric acid (BAIBA) were investigated in water as a solvent by two quantum chemical methods. B3LYP hybrid version of DFT was used for geometry optimization and a full vibrational analysis of neutral molecules, their cations and anions in the canonical and zwitterionic forms (6 forms for each species). Ab initio DLPNO-CCSD(T) method was applied in the geometry pre-optimized by B3LYP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!