Naturally occurring membranolytic antimicrobial peptides (AMPs) are rarely cell-type selective and highly potent at the same time. Template-based peptide design can be used to generate AMPs with improved properties . Following this approach, 18 linear peptides were obtained by computationally morphing the natural AMP Aurein 2.2d2 GLFDIVKKVVGALG into the synthetic model AMP KLLKLLKKLLKLLK. Eleven of the 18 chimeric designs inhibited the growth of , and six peptides were tested and found to be active against one resistant pathogenic strain or more. One of the peptides was broadly active against bacterial and fungal pathogens without exhibiting toxicity to certain human cell lines. Solution nuclear magnetic resonance and molecular dynamics simulation suggested an oblique-oriented membrane insertion mechanism of this helical peptide. Temperature-resolved circular dichroism spectroscopy pointed to conformational flexibility as an essential feature of cell-type selective AMPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547863PMC
http://dx.doi.org/10.1021/acs.biochem.0c00565DOI Listing

Publication Analysis

Top Keywords

membranolytic antimicrobial
8
antimicrobial peptides
8
cell-type selective
8
peptides
5
morphing amphipathic
4
amphipathic helices
4
helices explore
4
explore activity
4
activity selectivity
4
selectivity membranolytic
4

Similar Publications

Trp residues near peptide termini enhance the membranolytic activity of cationic amphipathic α-helices.

Biophys Chem

December 2024

Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany; KIT, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany. Electronic address:

KIA peptides were designed as a series of cationic antimicrobial agents of different lengths, based on the repetitive motif [KIAGKIA]. As amphiphilic helices, they tend to bind initially to the surface of lipid membranes. Depending on the conditions, they are proposed to flip, insert and form toroidal pores, such that the peptides are aligned in a transmembrane orientation.

View Article and Find Full Text PDF

Phototherapy has emerged to eradicate recalcitrant bacteria without causing drug resistance, but it is often accompanied by considerable limitations owing to a high tolerance of recalcitrant bacteria to heat and oxidative damage, leading to low efficiency of monotherapy and unwanted side effects. Assuming that employing antimicrobial peptides (AMPs) to disrupt bacterial membranes could reduce bacterial tolerance, a multifunctional "on-demand" nanosystem based on zeolitic imidazolate framework-8 (ZIF-8) with metal ions for intrinsic antibacterial activity was constructed to potently kill methicillin-resistant (MRSA). Then, microneedles (MNs) were used to transdermally deliver the ZIF-8-based nanosystem for localized skin infection.

View Article and Find Full Text PDF
Article Synopsis
  • There is a pressing need for alternatives to antibiotics, leading to the exploration of antimicrobial peptides (AMPs), particularly those derived from parasites, which are less studied.
  • This research identified three new potential AMP precursors in a parasitic flatworm, with mesco-2 emerging as the most effective, showing strong antibacterial activity against multiple pathogens.
  • Mechanistic studies revealed that mesco-2 interacts with anionic membranes and adopts unique structural conformations, emphasizing its potential as a selective antibacterial agent and the importance of specific structural features in AMP function.
View Article and Find Full Text PDF

Quaternary ammonium compounds (QACs) are a biologically active group of chemicals with a wide range of different applications. Due to their strong antibacterial properties and broad spectrum of activity, they are commonly used as ingredients in antiseptics and disinfectants. In recent years, the spread of bacterial resistance to QACs, exacerbated by the spread of infectious diseases, has seriously threatened public health and endangered human lives.

View Article and Find Full Text PDF

Antarctic fishes, living in an extreme environment and normally exposed to pathogens, are a promising source of antimicrobial peptides (AMPs). These are emerging as next-generation drugs due to their activity against multidrug resistant (MDR) bacteria. To infect hosts, beyond intrinsic/acquired resistance, MDR species also use virulence factors such as protease secretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!