Blood vessels are constantly exposed to mechanical stimuli such as shear stress due to flow and pulsatile stretch. The extracellular matrix maintains the structural integrity of the vessel wall and coordinates with a dynamic mechanical environment to provide cues to initiate intracellular signaling pathway(s), thereby changing cellular behaviors and functions. However, the precise role of matrix-cell interactions involved in mechanotransduction during vascular homeostasis and disease development remains to be fully determined. In this review, we introduce hemodynamics forces in blood vessels and the initial sensors of mechanical stimuli, including cell-cell junctional molecules, G-protein-coupled receptors (GPCRs), multiple ion channels, and a variety of small GTPases. We then highlight the molecular mechanotransduction events in the vessel wall triggered by laminar shear stress (LSS) and disturbed shear stress (DSS) on vascular endothelial cells (ECs), and cyclic stretch in ECs and vascular smooth muscle cells (SMCs)-both of which activate several key transcription factors. Finally, we provide a recent overview of matrix-cell interactions and mechanotransduction centered on fibronectin in ECs and thrombospondin-1 in SMCs. The results of this review suggest that abnormal mechanical cues or altered responses to mechanical stimuli in EC and SMCs serve as the molecular basis of vascular diseases such as atherosclerosis, hypertension and aortic aneurysms. Collecting evidence and advancing knowledge on the mechanotransduction in the vessel wall can lead to a new direction of therapeutic interventions for vascular diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/CS20190488 | DOI Listing |
Biomed Pharmacother
January 2025
Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurochemistry, 12 Smetna Str., Krakow 31-343, Poland. Electronic address:
Neuropathic pain is a disorder affecting the somatosensory nervous system. However, this condition is also characterized by significant neuroinflammation, primarily involving CNS-resident non-neuronal cells. A promising target for developing new analgesics is histamine H receptor (HR); thus, we aimed to determine the influence of a novel HR antagonist/inverse agonist, E-98 (1-(7-(4-chlorophenoxy)heptyl)-3-methylpiperidine), on pain symptoms and glia activation in model of neuropathic pain in male mice (chronic constriction injury to the sciatic nerve).
View Article and Find Full Text PDFMater Horiz
January 2025
Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
Dynamic responsive structural colored materials have drawn increased consideration in a wide range of applications, such as colorimetric sensors and high-safety tags. However, the sophisticated interactions among the individual responsive parts restrict the advanced design of multimodal responsive photonic materials. Inspired by stimuli-responsive color change in chameleon skin, a simple and effective photo-crosslinking strategy is proposed to construct hydroxypropyl cellulose (HPC) based hydrogels with multiple responsive structured colors.
View Article and Find Full Text PDFPain Rep
February 2025
Pain Management and Neuromodulation Centre, Guy's and St. Thomas' Hospital, London, United Kingdom.
Introduction: Fibromyalgia has a high female predominance and research work has been focussing mainly on women.
Objectives: We aimed to answer (1) gender differences in pain scores and quality of life, (2) any gender-specific subgroups defined by quantitative sensory testing (QST), and (3) correlations of QST parameters with pain intensity and questionnaire scores.
Methods: We evaluated clinical presentations and QST profiles from 38 male and 38 age-matched female patients.
Nanoscale
January 2025
Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea.
The differentiation of human induced pluripotent stem cells (hiPSCs) into neural progenitor cells (NPCs) is a promising approach for the treatment of neurodegenerative diseases and regenerative medicine. Dual-SMAD inhibition using small molecules has been identified as a key strategy for directing the differentiation of hiPSCs into NPCs by regulating specific cell signaling pathways. However, conventional culture methods are time-consuming and exhibit low differentiation efficiency in neural differentiation.
View Article and Find Full Text PDFHeliyon
January 2025
Centre for Tropicalization (CENTROP), Defence Research Institute, Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, 57000, Kuala Lumpur, Malaysia.
Nitrocellulose (NC)-based propellants have played a pivotal role in the development of energetic materials for both military and civilian applications. This review offers a comprehensive exploration of NC-based propellants, tracing their evolution from their historical origins as smokeless gunpowder to modern advancements. It discusses the chemical composition and classifications of NC propellants, along with continuous efforts to refine smokeless powder formulations through studies on smoke formation, residues, and additives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!