Nanocrystalline CoFe2O4 and Co0.5M0.5Fe2O4 (M = Mn, Ni, and Zn) ferrites were prepared by the solution combustion method using oxalyl dihydrazide as a fuel. These materials were characterized by several physicochemical techniques. X-ray diffraction (XRD) patterns indicate the cubic spinel structure of these ferrites. Field emission scanning electron microscopy (FESEM) images demonstrate the microporous nature of the materials because of the large amount of gas production during their synthesis. High resolution transmission electron microscopy (HRTEM) images show lattice fringes corresponding to the {220} and {311} planes of the spinel structure. Fourier transform infrared (FTIR) spectra exhibit absorption bands around the 500-600 cm-1 wavenumber region which are related to metal-oxygen bonds with tetrahedral coordination. Symmetric and asymmetric stretching and symmetric bending modes associated with tetrahedral and octahedral cations present in the spinel structures have been assessed by Raman spectroscopy. X-ray photoelectron spectroscopy (XPS) studies demonstrate the presence of Co2+, Mn2+, Ni2+, Zn2+, and Fe3+ in tetrahedral and octahedral coordinations in these ferrites. Co0.5Zn0.5Fe2O4 is observed to show the highest saturation magnetization among all these materials. The dielectric measurements reveal that the dielectric constant and loss values decrease with an increase in frequency and the ac conductivity increases at higher frequencies due to mobilization of the charge carriers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp03161e | DOI Listing |
Sci Rep
January 2025
Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
ZnO-doped CuO nanocomposites (CuO-ZnO NPs) of 1, 3, and 5 mol% were prepared by the solution combustion method using ODH as a fuel (Oxlyl-hydrazide) at 500 °C and calcining at 1000 °C for two hours and the Structural, photocatalytic, and electrochemical properties were investigated by experimental and theoretical methods. X-ray diffraction (XRD) patterns revealed a crystallite size (D) range of 25 to 31 nm for pure CuO and 1, 3, and 5 mol% CuO-ZnO NPs. According to calculations, the optical energy band gap (Eg) of the NPs is between 2.
View Article and Find Full Text PDFBioresour Bioprocess
December 2024
Production Systems Unit, Grasslands and Sustainable Agriculture Group, Natural Resources Institute Finland (Luke), Maaninka, FI-71750, Finland.
Thermal processes are emerging as promising solutions to recovering phosphorus and other nutrient elements from anaerobic digestates. The feasibility of nutrient element recovery depends largely on the fates of nutrient elements and heavy metals during thermal processing. This study assesses the partitioning of macronutrients (N, P, K, Na, Ca and Mg) and heavy metals (Zn, Cu, and Mn) between condensed and gaseous phases during thermal conversion of cattle slurry digestates in gas atmospheres of pyrolysis, combustion, and gasification processes.
View Article and Find Full Text PDFMol Pharm
January 2025
Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany.
There is still an insufficient understanding of how the characteristics of protein drugs are maintained in the solid state of lyophilizates, including aspects such as protein distances, local environment, and structural preservation. To this end, we evaluated protein folding and the molecules' nearest environment by electron paramagnetic resonance (EPR) spectroscopy. Double electron-electron resonance (DEER) probe distances of up to approximately 200 Å and is suitable to investigate protein folding, local concentration, and aggregation, whereas electron spin echo envelope modulation (ESEEM) allows the study of the near environment within approximately 10 Å of the spin label.
View Article and Find Full Text PDFACS Omega
December 2024
College of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China.
Nano-AlO derived from recyclable sources emerges as a promising sustainable solution for enhancing diesel engine efficiency while mitigating emissions. However, a lack of an in-depth understanding of the health hazard aspect still challenges its commercial applications. To this end, nano-AlO/diesel (NAD) blends prepared via ultrasonic homogenization were experimentally and analytically investigated under various injection timings and excess air coefficients to explore the potential of nano-AlO for balancing energy performance and emissions.
View Article and Find Full Text PDFWork
December 2024
Programa de Pós-graduação em Engenharia de Produção - Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
Background: Confined space work poses a significant threat to worker safety and health, especially in industrial environments like petrochemical plants and refineries. These environments present additional hazards beyond those inherent to confined spaces, such as high pressures, temperatures, and exposure to toxic, flammable, and combustible substances.
Objective: This study aimed to apply the Deparis method (Participatory Risk Diagnosis) to confined space work in the oil and gas industry.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!