Purpose: In this study, pore size and porosity distribution of porous Ti-6Al-4V scaffolds (pTi) were controlled by 3D printing. The effects of pore size distribution at a constant porosity, or porosity distribution at a constant pore size pertaining to functions of adhesion, proliferation, and differentiation of the mouse embryonic osteoblast precursor (MC3T3-E1) cells were researched separately.

Methods: 3D printing was used to design five groups of pTi, designated as PS/HP, PS/LP, PS/HP, PS/LP, and PS/HP based on pore size and porosity distribution. MC3T3-E1 cells were cultured on pTi, and non-porous Ti-6Al-4V samples (npTi) were prepared as control. The pTi was characterized with the scanning electron microscopy (SEM). MC3T3-E1 cells were stained AlamarBlue assay and viability and proliferation analyzed. The mRNA levels of alkaline phosphatase (ALP), osteocalcin (OCN), collagentype-1 (Col-1), and runt-related transcription factor 2 (Runx2) in MC3T3-E1 cells were analyzed by real-time PCR analysis.

Results: The average pore size and porosity of pTi were recorded as (301 ± 9 μm, 58.8 ± 1.8%), (300 ± 9 μm, 43.4 ± 1.3%), (501 ± 11 μm, 58.3 ± 1.2%), (499 ± 12 μm, 42.7 ± 1.1%), and (804 ± 10 μm, 58.9 ± 1.3%), respectively. SEM images confirmed active attachment of cells and oriented with the direction of metal rod after pTi/MC3T3-E1 co-culture for 3 and 7 days. In addition, MC3T3-E1 cells grown on the PS/HP displayed significantly higher proliferation compared with each group after 3 days incubation ( < 0.05). Moreover, cells showed some degree of proliferation in all groups, with the highest value recorded for PS/HP after culture for 7 days ( < 0.05). The gene expression pattern of ALP, OCN, Col-1, and Runx2 confirmed that these were down-regulated when pore size increased or porosity decreased of pTi ( < 0.05).

Conclusion: The pTi facilitated the adhesion and differentiation of osteoblast when pore size decreased or porosity increased. The scaffold model resembles physical modification with porous structures, which has potential application in the surface modifications of Ti implant.

Download full-text PDF

Source
http://dx.doi.org/10.1177/2280800020934652DOI Listing

Publication Analysis

Top Keywords

pore size
32
mc3t3-e1 cells
20
size porosity
16
porosity distribution
16
size
8
porosity
8
distribution constant
8
ps/hp ps/lp
8
ps/lp ps/hp
8
pore
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!