For practical device applications, monolayer transition metal dichalcogenide (TMD) films must meet key industry needs for batch processing, including the high-throughput, large-scale production of high-quality, spatially uniform materials, and reliable integration into devices. Here, high-throughput growth, completed in 12 min, of 6-inch wafer-scale monolayer MoS and WS is reported, which is directly compatible with scalable batch processing and device integration. Specifically, a pulsed metal-organic chemical vapor deposition process is developed, where periodic interruption of the precursor supply drives vertical Ostwald ripening, which prevents secondary nucleation despite high precursor concentrations. The as-grown TMD films show excellent spatial homogeneity and well-stitched grain boundaries, enabling facile transfer to various target substrates without degradation. Using these films, batch fabrication of high-performance field-effect transistor (FET) arrays in wafer-scale is demonstrated, and the FETs show remarkable uniformity. The high-throughput production and wafer-scale automatable transfer will facilitate the integration of TMDs into Si-complementary metal-oxide-semiconductor platforms.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202003542DOI Listing

Publication Analysis

Top Keywords

high-throughput growth
8
wafer-scale monolayer
8
monolayer transition
8
transition metal
8
metal dichalcogenide
8
vertical ostwald
8
ostwald ripening
8
tmd films
8
batch processing
8
high-throughput
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!