Tuning the selective permeability of polydisperse polymer networks.

Soft Matter

Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany and Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany. and Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, D-79110 Freiburg, Germany.

Published: September 2020

We study the permeability and selectivity ('permselectivity') of model membranes made of polydisperse polymer networks for molecular penetrant transport, using coarse-grained, implicit-solvent computer simulations. In our work, permeability P is determined on the linear-response level using the solution-diffusion model, P = KDin, i.e., by calculating the equilibrium penetrant partition ratio K and penetrant diffusivity Din inside the membrane. We vary two key parameters, namely the network-network interaction, which controls the degree of swelling and collapse of the network, and the network-penetrant interaction, which tunes the selective penetrant uptake and microscopic energy landscape for diffusive transport. We find that the partitioning K covers four orders of magnitude and is a non-monotonic function of the parameters, well interpreted by a second-order virial expansion of the free energy of transferring one penetrant from a reservoir into the membrane. Moreover, we find that the penetrant diffusivity Din in the polydisperse networks, in contrast to highly ordered membrane structures, exhibits relatively simple exponential decays. We propose a semi-empirical scaling law for the penetrant diffusion that describes the simulation data for a wide range of densities and interaction parameters. The resulting permeability P turns out to follow the qualitative behavior (including maximization and minimization) of partitioning. However, partitioning and diffusion are typically anti-correlated, yielding large quantitative cancellations, controlled and fine-tuned by the network density and interactions, as rationalized by our scaling laws. We finally demonstrate that even small changes of network-penetrant interactions, e.g., by half a kBT, modify the permselectivity by almost one order of magnitude.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0sm01083aDOI Listing

Publication Analysis

Top Keywords

polydisperse polymer
8
polymer networks
8
penetrant diffusivity
8
diffusivity din
8
penetrant
7
tuning selective
4
permeability
4
selective permeability
4
permeability polydisperse
4
networks study
4

Similar Publications

Hyaluronan (HA; [-3-GlcNAc-1-beta-4-GlcA-1-beta] ), an essential matrix polysaccharide of vertebrates and the molecular camouflage coating in certain pathogens, is polymerized by "HA synthase" (HAS) enzymes. Three HAS classes have been identified with biotechnological utility, but only the Class II PmHAS from Type A has been useful for preparation of very defined HA polymers in vitro. Two general chemoenzymatic strategies with different size products are possible: (1) repetitive step-wise extension reactions by sequential addition of a single monosaccharide from a donor UDP-sugar onto an acceptor (or "primer") comprised of a short glycosaminoglycan chain (e.

View Article and Find Full Text PDF

The widespread use of plastics in the food industry raises concerns about plastic migration and health risks. The degradation of primary polymers like polystyrene (PS) and polyethylene (PE) can generate nanoplastics (NPs), increasing food biohazard. This study assessed the impact of PS, PE, and PS + PE NPs on (CV) and (HP) before and after in vitro and ex vivo digestion, focusing on particle size, polydispersity index, and surface charge.

View Article and Find Full Text PDF

The natural flavonoid Quercetin (QT) showed a potential for various health benefits, but its pharmaceutical applications are hindered by low solubility, permeability, and limited bioavailability. This research aimed to synthesize, develop and optimize polylactic acid co-glycolic acid (PLGA) nanobubbles using solvent evaporation method as a sustained delivery system for QT, thus improving stability and bioavailability. Through a four-factor, three-level Box Behnken Design, 29 experimental runs were carried out to optimize QT-PLGA nanobubbles.

View Article and Find Full Text PDF

Purification and structural characterization of a neutral polysaccharide from Boletus auripes using self-made quaternary chitosan cryogel.

Int J Biol Macromol

December 2024

College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan 430072, China. Electronic address:

The purification of polysaccharides is an essential preliminary step in determining their chemical structure, although it presents significant challenges. In this research, a macro-porous monolith of quaternary chitosan cryogel was synthesized for the purification of a neutral polysaccharide from Boletus auripes. A homogeneous neutral polysaccharide (BAP-1a1) with a weight-average molecular weight of 4.

View Article and Find Full Text PDF

Background And Purpose: Cyclophosphamide (CP) is a widely used antitumor and immunosuppressive drug, but it is highly cytotoxic and has carcinogenic and teratogenic potential. To reduce adverse effects of CP therapy and the frequency of its administration, the microencapsulation of CP into biodegradable polymeric matrices can be performed. However, according to the literature, only a few polymers were found suitable to encapsulate CP and achieve its' sustained release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!