We study the permeability and selectivity ('permselectivity') of model membranes made of polydisperse polymer networks for molecular penetrant transport, using coarse-grained, implicit-solvent computer simulations. In our work, permeability P is determined on the linear-response level using the solution-diffusion model, P = KDin, i.e., by calculating the equilibrium penetrant partition ratio K and penetrant diffusivity Din inside the membrane. We vary two key parameters, namely the network-network interaction, which controls the degree of swelling and collapse of the network, and the network-penetrant interaction, which tunes the selective penetrant uptake and microscopic energy landscape for diffusive transport. We find that the partitioning K covers four orders of magnitude and is a non-monotonic function of the parameters, well interpreted by a second-order virial expansion of the free energy of transferring one penetrant from a reservoir into the membrane. Moreover, we find that the penetrant diffusivity Din in the polydisperse networks, in contrast to highly ordered membrane structures, exhibits relatively simple exponential decays. We propose a semi-empirical scaling law for the penetrant diffusion that describes the simulation data for a wide range of densities and interaction parameters. The resulting permeability P turns out to follow the qualitative behavior (including maximization and minimization) of partitioning. However, partitioning and diffusion are typically anti-correlated, yielding large quantitative cancellations, controlled and fine-tuned by the network density and interactions, as rationalized by our scaling laws. We finally demonstrate that even small changes of network-penetrant interactions, e.g., by half a kBT, modify the permselectivity by almost one order of magnitude.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0sm01083a | DOI Listing |
Proteoglycan Res
October 2024
Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
Hyaluronan (HA; [-3-GlcNAc-1-beta-4-GlcA-1-beta] ), an essential matrix polysaccharide of vertebrates and the molecular camouflage coating in certain pathogens, is polymerized by "HA synthase" (HAS) enzymes. Three HAS classes have been identified with biotechnological utility, but only the Class II PmHAS from Type A has been useful for preparation of very defined HA polymers in vitro. Two general chemoenzymatic strategies with different size products are possible: (1) repetitive step-wise extension reactions by sequential addition of a single monosaccharide from a donor UDP-sugar onto an acceptor (or "primer") comprised of a short glycosaminoglycan chain (e.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 29600 Lodi, Italy.
The widespread use of plastics in the food industry raises concerns about plastic migration and health risks. The degradation of primary polymers like polystyrene (PS) and polyethylene (PE) can generate nanoplastics (NPs), increasing food biohazard. This study assessed the impact of PS, PE, and PS + PE NPs on (CV) and (HP) before and after in vitro and ex vivo digestion, focusing on particle size, polydispersity index, and surface charge.
View Article and Find Full Text PDFPharm Dev Technol
December 2024
Brilliant Grammar School Educational Society's Group of Institutions - Integrated Campus (Faculty of Engineering and Faculty of Pharmacy), Hyderabad, Telangana, India.
The natural flavonoid Quercetin (QT) showed a potential for various health benefits, but its pharmaceutical applications are hindered by low solubility, permeability, and limited bioavailability. This research aimed to synthesize, develop and optimize polylactic acid co-glycolic acid (PLGA) nanobubbles using solvent evaporation method as a sustained delivery system for QT, thus improving stability and bioavailability. Through a four-factor, three-level Box Behnken Design, 29 experimental runs were carried out to optimize QT-PLGA nanobubbles.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan 430072, China. Electronic address:
The purification of polysaccharides is an essential preliminary step in determining their chemical structure, although it presents significant challenges. In this research, a macro-porous monolith of quaternary chitosan cryogel was synthesized for the purification of a neutral polysaccharide from Boletus auripes. A homogeneous neutral polysaccharide (BAP-1a1) with a weight-average molecular weight of 4.
View Article and Find Full Text PDFADMET DMPK
October 2024
Siberian Federal University, 79 Svobodny pr., Krasnoyarsk 660041, Russia.
Background And Purpose: Cyclophosphamide (CP) is a widely used antitumor and immunosuppressive drug, but it is highly cytotoxic and has carcinogenic and teratogenic potential. To reduce adverse effects of CP therapy and the frequency of its administration, the microencapsulation of CP into biodegradable polymeric matrices can be performed. However, according to the literature, only a few polymers were found suitable to encapsulate CP and achieve its' sustained release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!